吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1426-1435.doi: 10.13229/j.cnki.jdxbgxb201705014

• • 上一篇    下一篇

基于驾驶行为多元时间序列特征的愤怒驾驶状态检测

万平1, 2, 3, 吴超仲1, 2, 林英姿3, 马晓凤1, 2   

  1. 1.武汉理工大学 智能交通系统研究中心,武汉 430063;
    2.水路公路交通安全控制与装备教育部工程技术研究中心,武汉 430063;
    3. 东北大学 智能人机系统实验室,美国 波士顿02115
  • 收稿日期:2016-06-22 出版日期:2017-09-20 发布日期:2017-09-20
  • 通讯作者: 马晓凤(1981-),女,副研究员,博士.研究方向:驾驶行为与智能交通.E-mail:maxiaofeng@whut.edu.cn
  • 作者简介:万平(1984-),男,博士研究生.研究方向:驾驶行为与安全辅助驾驶.E-mail:pingw04@163.com
  • 基金资助:
    国家自然科学基金项目(51775396,51178364,51108362); 美国国家科学基金项目(1333524); 国家留学基金管理委员会项目(201406950045)

Driving anger detection based on multivariate time series features of driving behavior

WAN Ping1, 2, 3, WU Chao-zhong1, 2, LIN Ying-zi3, MA Xiao-feng1, 2   

  1. 1.Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China;
    2.Engineering Research Center for Transportation Safety, Ministry of Education, Wuhan 430063, China;
    3.Intelligent Human-Machine Systems Laboratory, Northeastern University, Boston 02115, USA
  • Received:2016-06-22 Online:2017-09-20 Published:2017-09-20

摘要: 为了对“路怒症”进行有效干预,提出了一种基于驾驶行为的愤怒驾驶状态检测模型。在交通繁忙路段开展基于道路事件刺激的愤怒情绪诱导限时实验,获得驾驶人愤怒与中性情绪下的驾驶行为数据。运用分段线性表示方法拟合由方向盘转角与车辆横向位置组成的驾驶行为多元时间序列,并采用自底向上算法对该时间序列进行分段,提取各分段的斜率与时间间隔特征作为模型输入,建立基于支持向量机的愤怒驾驶状态检测模型。结果表明:模型的识别精度在10分段条件下达78.69%,较5分段、20分段分别高8.57%、4.85%。研究结果可为开发基于驾驶行为的愤怒情绪实时检测设备提供理论支持。

关键词: 交通运输系统工程, 愤怒驾驶检测, 多元时间序列, 驾驶行为, 分段线性表示

Abstract: To explore effective approaches of intervention on road rage, a driving anger detection model based on driving behavior is proposed. The driving behavior data in angry and neutral states were acquired by conducting timed experiments for driving anger induction in busy traffic sections. Piecewise Linear Representation (PLR) method was used to fit multivariate time series, which consists of steering wheel angle and vehicle lateral position, and a bottom-up algorithm was implemented to separate the multivariate time series. The slope and time interval of each segment were extracted as the input features of a Support Vector Machine (SVM) model, which was used to recognize the driving anger. The validation results show that the accuracy of the proposed model with ten segments is 78.69%, which is 8.57% and 4.85% higher than that with five segments and twenty segments, respectively. This study may provide reference for the design of real driving anger detection devices based on driving behavior.

Key words: engineering of communication and transportation system, driving anger detection, multivariate time series, driving behaviors, piecewise linear representation

中图分类号: 

  • U491
[1] 吴超仲,雷虎.汽车驾驶愤怒情绪研究现状与展望[J]. 中国安全科学学报, 2010, 20(7):3-8.
Wu Chao-zhong, Lei Hu. Review on the study of motorists' driving anger[J].China Safety Science Journal, 2010, 20(7):3-8.
[2] National highway traffic safety administration (NHTSA): traffic safety facts: a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system. Department of Transportation[Z].
[3] 雷虎.愤怒情绪下的汽车驾驶行为特征及其对交通安全的影响研究[D].武汉:武汉理工大学智能交通系统研究中心,2011.
Lei Hu.The characteristics of angry driving behaviors and its effects on traffic safety[D]. Wuhan: Intelligent Transport Systems Research Center,Wuhan University of Technology, 2011.
[4] Dahlen E R, Martin R C, Ragan K, et al. Driving anger, sensation seeking, impulsiveness, and boredom proneness in the prediction of unsafe driving[J].Accident Analysis and Prevention, 2005, 37(2):341-348.
[5] 张迪, 万柏坤, 明东. 基于生理信号的情绪识别研究进展[J]. 生物医学工程学杂志, 2015, 32(1):229-234.
Zhang Di, Wan Bai-kun, Ming Dong.Research progress on emotion recognition based on physiologicalsignals[J]. Journal of Biomedical Engineering, 2015, 32(1):229-234.
[6] 林启万.基于情绪计算的驾驶行为研究[D]. 广州:广东工业大学机电工程学院,2014.
Lin Qi-wan.Research on driving behavior based on emotional computing[D].Guangzhou: School of Electromechanical Engineering of Guangdong University of Technology,2014.
[7] Jones C, Jonsson I. Detecting emotions in conversations between driver and in-car information systems[C]∥Proceedings of the First International Conference on Affective Computing and Intelligent Interaction, Berlin,Germany, 2005:780-787.
[8] Kessous L, Castellano G, Caridakis G. Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis[J]. Journal on Multimodal User Interfaces, 2010, 3(1): 33-48.
[9] Wang Jin-jun, Gong Yi-hong. Normalizing multi-subject variation for drivers' emotion recognition[C]∥IEEE International Conference on Multimedia and Expo, New York, USA, 2009:354-357.
[10] Katsis C, Goletsis Y, Rigas G,et al. A wearable system for the affective monitoring of car racing driversduring simulated conditions[J].Transportation Research Part C: Emerging Technologies,2011, 19:541-551.
[11] Liu Yi-hung, Wu Chien-te, Cheng Wei-teng, et al. Emotion recognition from single-trial EEG based on kernel fisher's emotion pattern and imbalanced quasiconformalkernel support vector machine[J].Sensors,2014, 14:13361-13388.
[12] Herrero-Fernánde D. Psychometric adaptation of the driving anger expression inventory in a Spanish sample: differences by age and gender[J]. Transportation Research Part F:Traffic Psychology and Behavior,2011 (14):324-329.
[13] 严新平,张晖,吴超仲,等. 道路交通驾驶行为研究进展及其展望[J]. 交通信息与安全, 2013, 31(1):45-51.
Yan Xin-ping, Zhang Hui, Wu Chao-zhong, et al. Research progress and prospect of road traffic driving behavior[J].Journal of Transport Information and Safety, 2013, 31(1):45-51.
[14] 廖俊,于雷, 罗寰, 等.基于趋势转折点的时间序列分段线性表示[J].计算机工程与应用, 2010, 46(30):50-53.
Liao Jun, Yu Lei, Luo Huan, et al. Time series piecewise linear representation based on trend transition point[J]. Computer Engineering and Applications, 2010, 46(30):50-53.
[15] Bankó Z, Abonyi J.Correlation based dynamic time warping of multivariatetime series[J]. Expert Systems with Applications, 2012, 39(17): 12814-12823.
[16] 徐淼,赵丁选,倪涛, 等.基于最小二乘支持向量机的混合动力挖掘机负载功率预测[J].吉林大学学报:工学版, 2015, 45(1):133-138.
Xu Miao, Zhao Ding-xuan, Ni Tao, et al. Load prediction of hybrid excavator based onleast square support vector machine[J].Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1):133-138.
[17] 万平,吴超仲,林英姿,等. 基于置信规则库的驾驶人愤怒情绪识别模型[J]. 交通运输系统工程与信息, 2015,15(5):96-102.
Wan Ping, Wu Chao-zhong, Lin Ying-zi, et al. A recognition model of driving anger based on belief rule base[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5):96-102.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .