吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 11-19.doi: 10.13229/j.cnki.jdxbgxb20170525

• 论文 • 上一篇    下一篇

基于横摆力矩控制的电动轮汽车转弯节能控制

孙文, 王庆年, 王军年   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2017-05-22 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 王军年(1981-),男,教授,博士.研究方向:节能与新能源汽车.E-mail:junnianwang@126.com
  • 作者简介:孙文(1989-),女,博士研究生.研究方向:节能与新能源汽车.E-mail: sun_wendy@126.com
  • 基金资助:
    国家自然科学基金项目(51205153); 吉林省自然科学基金项目(20140101072JC)

Yaw-moment control of motorized vehicle for energy conservation during cornering

SUN Wen, WANG Qing-nian, WANG Jun-nian   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2017-05-22 Online:2018-02-26 Published:2018-02-26

摘要: 首先,研究了车辆转弯时转弯阻力产生的机理,提出了影响转弯阻力的因素。然后,提出了通过改变纵向力分配减小转弯阻力的方法。最后,基于车身稳定性的约束,通过理论分析和计算机仿真,对比了纵向力分配前、后车辆转弯过程中的能耗,并采用遗传算法对后轴轮间的转矩分配系数进行了优化。研究表明,通过对电动轮汽车的纵向力分配,可以降低电动汽车在转弯过程中的能耗,提高转弯机动性。

关键词: 车辆工程, 电动汽车, 四轮独立驱动, 横摆力矩控制, 转弯阻力, 遗传算法

Abstract: In this paper, based on the study of vehicle dynamics during turning, the reason that causing extra driving resistance was found. It was proposed that a counter yaw moment can mitigate this extra driving resistance during turning. For a vehicle with independent electric drive for left and right wheels on rear axle, driving power can be reduced by means of proper torque distribution between the left and right wheels. By theoretical analysis and simulation, he optimal torque distribution coefficient of the real axle was obtained by genetic algorithm, by which the vehicle consumes the lowest power during turning without causing instability. This research shows that the vehicle energy consumption can be reduced, and turning maneuverability can be improved by the yaw moment control.

Key words: vehicle engineering, electric vehicle, four-wheel independent drive, yaw moment control, turning resistance, genetic algorithm

中图分类号: 

  • U461.1
[1] 罗玉潭,谭迪. 一种带新型内置悬置系统的电动轮结构研究[J]. 汽车工程,2013,36(12):1105-1110.
Luo Yu-tan, Tan Di.A research on the hub-motor driven wheel structure with a novel built-in mounting system[J]. Automotive Engineering, 2013, 36(12):1105-1110.
[2] 孙文,王军年,王庆年,等. 电动轮驱动系统结构设计与仿真研究[J]. 汽车工程,2016,38(3):330-336.
Sun Wen, Wang Jun-nian, Wang Qing-nian, et al.A study on the structural design and simulation of in-wheel motor drive system[J]. Automotive Engineering, 2016, 38(3):330-336.
[3] Singh B,Naidu N K S. Direct power control of single VSC based DFIG without rotor position sensor[C]∥IEEE International Conference on Power Electronics, Drives and Energy Systems, Bengaluru, India, 2012:1-6.
[4] 余卓平,姜炜,张立军. 四轮轮毂电机驱动电动汽车扭矩分配控制[J]. 同济大学学报:自然科学版,2008,36(8):1115-1119.
Yu Zhuo-pin, Jiang Wei, Zhang Li-jun.Torque distribution control for four wheel in-wheel-motor electric vehicle[J]. Journal of Tongji University (Natural Science), 2008, 36(8):1115-1119.
[5] Koichi Ono.Electric drive system forsport hybrid SH-AWD[C]∥SAE Paper, 2014-01-1821.
[6] 卢东斌,欧阳明高,谷靖, 等. 四轮驱动电动汽车永磁无刷轮毂电机转矩分配[J]. 清华大学学报:自然科学版,2012, 52(4):451-456.
Lu Dong-bin,Ou-yang Ming-gao,Gu Jing,et al.Torque distribution algorithm for a permanent brushless DC hub motor for four-wheel drive electric vehicle[J]. Journal of Tsinghua University(Sci & Tech), 2012, 52(4):451-456.
[7] Kiumars Jalali, Thomas Uchida, Steve Lambert, et al.Development of an advanced torque vectoring control system for an electric vehicle with in-wheel motors using soft computing techniques[C]∥SAE Paper, 2013-01-0698.
[8] Christophe Moure, Klaus Kersting.Development of functional safety in a multi-motor control system for electric vehicles[C]∥SAE Paper, 2012-01-0028.
[9] Athari Abtin, Fallah Saber, Li Bin, et al. optimal torque control for an electric-drive vehicle with in-wheel motor: implementation and experiments [C]∥ SAE Paper, 2013-01-0674
[10] Jin L Q, Liu Y.Study on adaptive slid mode controller for improving handling stability of motorized electric vehicles[J]. Mathematical Problems in Engineering, 2014, 2014:1-10.
[11] Shibahata Y, Shimada K, Tomari T.Improvement of vehicle maneuverability by direct yaw moment control[J]. Vehicle System Dynamics, 1993, 22(5/ 6): 465-481.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 吴蔚楠,崔乃刚,郭继峰,赵杨杨. 多异构无人机任务规划的分布式一体化求解方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1827-1837.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 焦玉玲, 张鹏, 田广东, 邢小翠, 邹连慧. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1398-1404.
[15] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!