吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 1-10.doi: 10.13229/j.cnki.jdxbgxb20161398

• 论文 •    下一篇

轮毂液压混合动力商用车主动防侧翻控制

曾小华1, 李广含1, 宋大凤1, 李胜2, 朱志成1   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.一汽解放青岛汽车有限公司,山东 青岛 266043
  • 收稿日期:2016-12-25 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 宋大凤(1977-),女,副教授,博士.研究方向:车辆地面力学集成控制. E-mail: songdf@126.com
  • 作者简介:曾小华(1977-),男,教授,博士生导师.研究方向:混合动力系统. E-mail: zeng.xiaohua@126.com
  • 基金资助:
    国家自然科学基金项目(51675214,51575221); 吉林大学研究生创新基金项目(2017127).

Active anti-rollover control for hydraulic hub-motor hybrid system of heavy commercial vehicles

ZENG Xiao-hua1, LI Guang-han1, SONG Da-feng1, LI Sheng2, ZHU Zhi-cheng1   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. FAW Jiefang Automotive Co, Ltd,Qingdao 266043, China
  • Received:2016-12-25 Online:2018-02-26 Published:2018-02-26

摘要: 针对轮毂液压混合动力重型商用车功能特点,提出了基于前轮轮毂液压泵/马达差动制动的主动防侧翻控制算法。首先,建立重型车辆线性二自由度模型,根据线性二次型最优控制原理设计主动防侧翻控制器,并决策最优横摆力矩;其次,结合轮毂液压混合动力系统特点,利用安装于车辆前轮的二次元件液压泵/马达再生制动实现前轮主动制动,并设计液压泵/马达再生制动转矩前馈+反馈控制器;最后,利用TruckSim与AMESim仿真软件分别建立整车模型以及液压系统模型,并基于MATLAB/Simulink建立主动防侧翻控制算法,通过MATLAB/Simulink、Trucksim和AMESim三软件搭建联合仿真平台,选取阶跃转向和鱼钩转向两种典型转向工况进行仿真验证。结果表明,所提出的主动防侧翻控制算法能够有效提高车辆侧倾稳定性,且利用前轮轮毂液压泵/马达实现主动制动时可以有效回收部分制动能量,提高车辆经济性。

关键词: 车辆工程, 主动防侧翻控制, 再生制动, 轮毂液压混合动力, 线性二次型最优

Abstract: A active anti-rollover control algorithm based on differential bake of front wheel was proposed for hybrid hydraulic hub-motor hybrid heavy truck. First, the linear model with two degrees of freedom of the heavy truck was developed, and the active anti-rollover controller was designed according to linear quadratic optimal principles, which could calculate the optimal yawing moment. Then, the active braking of front wheel was achieved by the secondary component, hydraulic in-wheel pump/motor, which could realize regenerative brake, and the regenerative braking torque controller of the secondary component was designed by feedforward and feedback control. Finally, the system model was constructed on the Trucksim and AMESim platform, and the active anti-rollover control algorithm was built on Matlab/Simulink platform. The co-simulation was conducted on the Matlab/Simulink, Trucksim and AMESim platform to verify the proposed algorithm, in which step steering condition and hooks steering condition were applied. Results show that the vehicle lateral stability can be improved effectively by the active anti-rollover control algorithm, and good fuel economy is obtained by using the secondary component to recover the braking energy of the front wheel.

Key words: vehicle engineering, active anti-rollover control, regenerative brake, hydraulic hub-motor hybrid system, linear quadratic regulator

中图分类号: 

  • U469.7
[1] Jarossi Linda, Matteson Anne, Woodrooffe John.Trucks involved in fatal accidents factbook 2007[J]. Buses, 2010 , 48(4): 519.
[2] Solmaz S, Corless M, Shorten R.A methodology for the design of robust rollover prevention controllers for automotive vehicles with active steering[J]. IEEE Conference on Decision & Control, 2007, 80(11):1739-1744.
[3] Farazandeh A, Ahmed A K W,Rakheja S.Performance analysis of active independent front steering (AIFS) for commercial vehicles with greater lateral load shift propensity[J]. SAE International Journal of Commercial Vehicles, 2013, 6(2): 288-300.
[4] Chung T, Yi K.An investigation into differential braking strategies on a banked road for vehicle stability control[J].Journal of Automobile Engineering, 2007, 221(4): 443-455.
[5] 于志新, 宗长富, 何磊, 等. 基于TTR 预警的重型车辆防侧翻控制算法[J]. 吉林大学学报: 工学版, 2009,39(增刊2): 251-254.
Yu Zhi-xin, Zong Chang-fu, He Lei, et al.Algorithms of anti-rollover control for heavy vehicle based on TTR warning[J]. Journal of Jilin University (Engineering and Technology Edition), 2009,39(Sup.2): 251-254.
[6] 谢兆夫, 赵亮, 郭孔辉,等. 重型车辆的差动制动防侧翻控制[J]. 中国机械工程, 2015, 26(24): 3402-3407.
Xie Zhao-fu, Zhao Liang, Guo Kong-hui, et al.Differential braking-based anti-rollover control for heavy-duty vehicle[J]. Chinese Mechanical Engineering, 2015, 26(24): 3402-3407.
[7] Parida N C, Raha S, Ramani A.Rollover preventive force synthesis at active suspensions in a vehicle performing a severe maneuver with wheels lifted off[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(6):2583-2594.
[8] Li H, Liu H, Gao H, et al.Reliable fuzzy control for active suspension systems with actuator delay and fault[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2):342-357.
[9] Lee S, Yakub F, Kasahara M, et al.Rollover prevention with predictive control of differential braking and rear wheel steering[C]∥Proc of 6th IEEE Int Conf Robotics, Automation and Mechatronics,Manila,Philippines,2013:144-149.
[10] 赵健, 郭俐彤, 朱冰,等. 基于底盘集成控制的轻型汽车防侧翻控制[J]. 汽车工程, 2014, 36(3):334-339.
Zhao Jian, Guo Li-tong, Zhu Bing, et al.Roll control of light vehicles based on integrated chassis control[J]. Automotive Engineering, 2014, 36(3):334-339.
[11] 贺辉, 宋大凤, 杨南南, 等. 轮毂马达液驱系统控制与仿真[J]. 吉林大学学报: 工学版, 2012,42(增刊1): 27-31.
He Hui, Song Da-feng, Yang Nan-nan, et al.Control and simulation of hydraulic in-wheel motor propulsion system[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(Sup.1): 27-31.
[12] 李胜, 宋大凤, 曾小华, 等. 重型卡车轮毂马达液压驱动系统建模与仿真[J]. 农业机械学报, 2012, 43(4): 10-14.
Li Sheng, Song Da-feng, Zeng Xiao-hua, et al.Modeling and simulation of hydraulic wheel motor propulsion system for heavy truck[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 10-14.
[13] 牛峰. MAN 公司开发重型汽车新型前轮驱动——动液传动系统[J]. 汽车与配件,2006,44: 44-45.
Niu Feng.MAN developed new front wheel drive system for heavy truck-hydra-matic driving system[J].Automobile & Parts, 2006,44: 44-45.
[14] 马娟丽. LQR 系统最优控制器设计的 MATLAB 实现及应用[J]. 石河子大学学报: 自然科学版, 2005, 23(4): 519-521.
Ma Juan-li.The optimal controller design of LQR and the application of MATLAB[J]. Journal of Shihezi University (Natural Science), 2005, 23(4): 519-521.
[15] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009: 144-146.
[16] Walker P D, Zhu B, Zhang N.Nonlinear modeling and analysis of direct acting solenoid valves for clutch control[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(5): 051023.
[17] Lee J M, Park S H, Kim J S.A robust control of the pressure in a control-cylinder for the variable displacement axial piston pump[C]∥ The 7th Asian Control Conference,Xi'an,China,2009: 1280-1285.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!