吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1556-1562.doi: 10.13229/j.cnki.jdxbgxb20180320

• • 上一篇    下一篇

具有区间时变时滞的线性系统稳定性分析

闫冬梅1, 钟辉1, 任丽莉2, 王若琳3, 李红梅1   

  1. 1.吉林大学 大数据和网络管理中心,长春 130012;
    2.长春师范大学 网络中心,长春 130032;
    3.吉林交通职业技术学院 管理工程学院,长春 130012
  • 收稿日期:2017-11-22 出版日期:2018-09-20 发布日期:2018-12-11
  • 通讯作者: 钟辉(1979-),男,副研究员,博士研究生.研究方向:通信与信息系统.E-mail:zhongh@jlu.edu.cn
  • 作者简介:闫冬梅(1978-),女,高级工程师.研究方向:网络系统管理与控制.E-mail:yandongm@jlu.edu.cn
  • 基金资助:
    吉林省省级产业创新专项项目(2017C031-4)

Stability analysis of linear systems with interval time-varying delay

YAN Dong-mei1, ZHONG Hui1, REN Li-li2, WANG Ruo-lin3, LI Hong-mei1   

  1. 1.Management Center of Big Data and Network, Jilin University, Changchun 130012,China;
    2.Network Center, Changchun Normal University, Changchun 130032,China;
    3.College of Administrative Engineering,Jilin Communications Polytechnic, Changchun 130012,China
  • Received:2017-11-22 Online:2018-09-20 Published:2018-12-11

摘要: 研究了给定区间时变时滞线性系统的稳定性问题。通过构造一个具有三重积分项的新的Lyaounov-Krasovskii泛函,利用一个最新提出的基于自由矩阵的积分不等式,得到了新的保守性更小的保证系统稳定的充分条件。最后,通过2个实例验证了所提出的方法比现有方法具有更小的保守性。

关键词: 自动控制技术, 时滞系统, 时滞依赖稳定性, 区间时滞, 线性矩阵不等式

Abstract: This paper investigates the stability problem of a linear system with time-varying delay. The time-varying delay is assumed to belong to a given interval. A new Lyapunov-Krasovskii function is constructed which contains some tripe integral terms. Using some integral inequalities including the recent proposed free-matrix-based integral inequality, new sufficient stability conditions are obtained, which are presented in terms of Linear Matrix Inequality (LMI). Finally, two examples are given to demonstrate that the obtained results are less conservative than some existing method.

Key words: automatic control technology, time-delay system, delay-dependent stability, interval delay, linear matrix inequality

中图分类号: 

  • TP273
[1] Sun J, Liu G P, Chen J, et al.Networked predictive control for Hammerstein systems[J]. Asian Journal of Control, 2011, 13: 265-272.
[2] Sun J, Chen J.Networked predictive control for systems with unknown or partially known delay[J]. IET Control Theory Appl,2014,8(18):2282-2288.
[3] 李学军,陈虹,于树友.基于时滞系统的无偏H滤波[J].吉林大学学报:工学版,2009,39(2):473-479.
Li Xue-jun, Chen Hong, Yu Shu-you.Unbiased Hfiltering for time delay system[J].Journal of Jilin University(Engineering and Technology Edition),2009,39(2):473-479.
[4] Fridman E, Shaked U.Delay-dependent stability and H control: constant and time-varying delays[J].International Journal of Control, 2003, 76: 48-60.
[5] Fridman E, Shaked U.An improved stabilization method for linear systems with time-delay[J]. IEEE Transactions on Automatic Control, 2002, 47: 1931-1937.
[6] He Y, Wang Q G, Lin C, et al.Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[J].International Journal of Robust and Nonlinear Control, 2005,15:923-933.
[7] He Y, Wang Q G, Xie L, et al.Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43: 371-376.
[8] He Y, Wang Q G, Xie L, et al.Further improvement of free-weighting matrices technique for systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2007,52:293-299.
[9] He Y, Wu M, She J H, et al.Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems & Control Letters, 2004, 51: 57-65.
[10] He Y, Wu M, She J H, et al.New delay-dependent stability criteria for robust stability of time-varying delay systems[J].Automatica, 2004, 40: 1435-1439.
[11] Sun J, Liu G P, Chen J, et al.Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J].Automatica, 2010, 46: 466-470.
[12] Sun J, Han Q L, Chen J, et al.Less conservative stability criteria for linear systems with interval time-varying delays[J].International Journal of Robust and Nonlinear Control, 2015, 25: 475-485.
[13] Gu K.Integral inequality in the stability problem of time-delay systems[C]∥Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000,3:2805-2810.
[14] Seuret A, Gouaisbaut F.Wirtinger-based integral inequality: application to time-delay systems[J].Automatica, 2013, 49: 2860-2866.
[15] Park P, Ko J W.Stability and robust stability for systems with a time-varying delay[J].Automatica, 2007, 43: 1855-1858.
[16] Park P, Ko J W, Jeong C.Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47: 235-238.
[17] Gu K, Han Q L, Luo A C J, et al. Discretized lyapunov functional for systems with distributed delay and piecewise constant coefficients[J].International Journal of Control, 2001, 74: 737-744.
[18] Gouaisbaut F, Peaucelle D.Delay-dependent robust stability of time delay systems[C]∥Proceedings of IFAC Symposium on Robust Control Design, Toulouse, France, 2006,5:453-458.
[19] Han Q L.New stability criteria for linear systems with interval time-varying delay[J]. Automatica, 2008, 44: 2680-2685.
[20] Hui Jun-jun, Zhang He-xin, Kong Xiang-yu, et al.On improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J].International Journal of Automation and Computing,2015,12(1):102-108.
[21] Fridman E.Tutorial on Lyapunov-based methods for time-delay systems[J]. European Journal of Control,2014,20(6):271-283.
[22] Zeng H B, He Y, Wu M, et al.Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015, 60(10): 2768-2772.
[23] Sun J, Chen J.A survey on Lyapunov-based methods for stability of linear time-delay systems[J]. Frontiers of Computer Science,2017,11(4):555-567.
[24] Liu K, Fridman E, Johansson K H, et al.Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons[J]. Automatica, 2016, 69: 222-231.
[25] Kim J H.Further improvement of Jensen inequality and application to stability of time-delayed systems[J]. Automatica, 2016,64:121-125.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[6] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[7] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[8] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[9] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[10] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[11] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[12] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[13] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[15] 胡云峰, 顾万里, 梁瑜, 杜乐, 于树友, 陈虹. 混合动力汽车启停非线性控制器设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[2] 周逢道, 王金玉, 唐红忠, 张赫, 周继瑜. 近地表电磁探测多频数字驱动信号产生技术[J]. 吉林大学学报(工学版), 2013, 43(03): 682 -687 .
[3] 欧阳继红, 王振鑫, 景黎. 扩展度量关系的9-交集模型[J]. 吉林大学学报(工学版), 2013, 43(03): 695 -700 .
[4] 郭铁梁, 赵旦峰, 杨大伟. 正交频分复用水声通信系统多普勒频移快速估计[J]. 吉林大学学报(工学版), 2013, 43(03): 813 -818 .
[5] 何耀, 刘兴涛, 张陈斌, 陈宗海. 基于动力电池组内阻模型的绝缘检测算法[J]. 吉林大学学报(工学版), 2013, 43(05): 1165 -1170 .
[6] 李志斌, 金茂菁, 刘攀, 徐铖铖. 提高高速公路通行效率的可变限速控制策略[J]. 吉林大学学报(工学版), 2013, 43(05): 1204 -1209 .
[7] 袁哲, 马文星, 刘春宝, 刘浩. 重型车开式液力减速器温度场分析[J]. 吉林大学学报(工学版), 2013, 43(05): 1271 -1275 .
[8] 隋洲, 蔡中义, 兰英武, 李明哲. 连续柔性成形三维曲面件的形状控制模型[J]. 吉林大学学报(工学版), 2013, 43(05): 1302 -1306 .
[9] 杨小军, 宋青松, 马祥, 李东海. 基于多模型信息滤波器的故障容错目标跟踪[J]. 吉林大学学报(工学版), 2013, 43(05): 1381 -1385 .
[10] 伍文, 孟相如, 刘芸江, 火兴林. 基于连续时间Markov的网络可生存性建模与量化[J]. 吉林大学学报(工学版), 2013, 43(05): 1395 -1400 .