吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1669-1676.doi: 10.13229/j.cnki.jdxbgxb20190523

• 材料科学与工程 • 上一篇    

焊接能量对铜/钛超声波焊接接头性能的影响

谷晓燕(),隋成龙,狄星,孟政宇,朱开轩,楚长春   

  1. 吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2019-05-27 出版日期:2020-09-01 发布日期:2020-09-16
  • 作者简介:谷晓燕(1979-),女,教授,博士.研究方向:先进材料连接.Email:guxiaoyan821@sina.com
  • 基金资助:
    国家自然科学基金项目(51805205)

Effect of welding energy on performance of Cu/Ti joints obtained by ultrasonic welding

Xiao-yan GU(),Cheng-long SUI,Xing DI,Zheng-yu MENG,Kai-xuan ZHU,Chang-chun CHU   

  1. College of Materials Science and Engineering,Jilin University,Changchun 130022, China
  • Received:2019-05-27 Online:2020-09-01 Published:2020-09-16

摘要:

采用高功率超声波点焊机成功焊接T2纯铜和Ti6Al4V钛合金异种金属,分析了不同焊接能量对接头的界面温度、横截面宏观形貌、界面成形和力学性能的影响。研究发现:随着焊接能量的增加,峰值温度和高温停留时间升高,压痕深度逐渐升高,接头界面均较平直,未出现金属间化合物,存在扩散层,最大厚度为2 μm,拉剪力随着接头结合面积的扩大而逐渐增大,最大值为2322 N。接头沿界面靠近铜侧母材断裂,断裂模式由脆性断裂过渡至韧-脆混合断裂。利用ABAQUS有限元数值模拟软件对不同焊接能量下的界面进行应力分析,系统地阐述了铜/钛超声波焊接接头界面成形机理。

关键词: 材料合成与加工工艺, 超声波焊接, 铜/钛异种金属, 焊接能量, 界面应力分布

Abstract:

The high-power ultrasonic spot welding machine was used to successfully weld T2 pure Cu and Ti6Al4V dissimilar metals. The effects of different welding energies on the interface temperature, cross-sectional macroscopic morphology, interface formation and mechanical properties of the joints were analyzed. It is shown that with the increase in welding energy, the peak temperature and high temperature residence time increase, the indentation depth increases gradually, the joint interface is flat and no intermetallic compounds appear, There is a diffusion layer with a maximum thickness of 2 μm at the interface. The tensile shear force gradually increases with the bonded area, and the maximum shear force is 2322 N. The joint fractures along the interface of the Cu side of the base material, and the fracture mode changes from brittle fracture to ductile-brittle mixed fracture. The stress analysis of the interface under different welding energies was carried out by using ABAQUS finite element numerical simulation software. The interface forming mechanism of Cu/Ti ultrasonic welded joints was systematically expounded.

Key words: materials synthesis and processing technology, ultrasonic welding, Cu/Ti dissimilar metal, welding energy, interfacial stress distribution

中图分类号: 

  • TG453

图1

超声波金属焊机及压齿形貌及尺寸"

图2

热电偶测温仪及测温位置示意图"

图3

剪切夹具示意图"

图4

不同焊接能量下界面处的热循环曲线"

图5

不同焊接能量下的接头宏观形貌"

图6

不同焊接能量下接头的微观界面形貌"

图7

不同焊接能量下接头界面处的应力分布"

图8

不同焊接能量下的EDS线扫描分析结果"

图9

3000 J焊接能量下界面的X射线衍射分析"

图10

不同焊接能量下接头的剪切力"

图11

不同焊接能量下接头断面宏观成形形貌"

图12

不同焊接能量下铜侧接头的断口形貌"

图13

不同焊接能量钛侧断口的面扫描"

图14

3000 J能量下断口X射线衍射分析"

1 李亚江, 王娟, 刘鹏. 异种难焊接材料的焊接及应用[M]. 北京: 化学工业出版社, 2004.
2 赵宇光, 周伟, 彭新. 钛合金表面低氧压熔结Al-Cr涂层及其高温抗氧化性[J]. 吉林大学学报: 工学版, 2004, 34(4): 521-526.
Zhao Yu-guang, Zhou Wei, Peng Xin. Low oxygen pressure self-fused Al-Cr coatings formed on surface of Ti alloy and their oxidation resistance[J]. Journal of Jilin University(Engineering and Technology Edition), 2004, 34(4): 521-526.
3 Jackson M J, Kopac J, Balazic M, et al. Titanium and titanium alloy applications in medicine[J]. International Journal of Nano and Biomaterials, 2007, 1(1): 3-34.
4 Jiang Z Q, Yang H, Zhen M, et al. State-of-the-arts and prospectives of manufacturing and application of titanium alloy tube in aviation industry[J]. Journal of Plasticity Engineering, 2009, 16(4): 44-50, 84.
5 Wang B Z, Li X M, Li Z, et al. Application and prospect of titanium and titanium alloy in automobile industry[J]. Titanium Industry Progress, 2006(5): 38-41.
6 季杰, 马学智. 铜及铜合金的焊接[J]. 焊接技术, 1999(2): 13-15.
Ji Jie, Ma Xue-zhi. Welding of copper and copper alloys[J]. Welding Technology, 1999(2): 13-15.
7 刘伟, 陈国庆, 张秉刚, 等. 铜/钛合金电子束焊接工艺优化[J]. 焊接学报, 2008, 29(5): 89-92.
Liu Wei, Chen Guo-qing, Zhang Bing-gang, et al. Investigation on process optimization of Cu/Ti electron beam welding[J]. Transactions of the China Welding Institution, 2008, 29(5): 89-92.
8 宋敏霞, 赵熹华, 郭伟, 等. Ti-6Al-4V/Ni/ZQSn10-10的扩散连接[J]. 吉林大学学报: 工学版, 2006, 36(1): 42-45.
Song Min-xia, Zhao Xi-hua, Guo Wei, et al. Diffusion bonding of Ti-6Al-4V to ZQSn10-10 with nickel interlayer[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(1): 42-45.
9 Luo Y, Xie X J, Wan R, et al. Influence of thermal effect on micro-hardness of magnesium alloy weld of vacuum electron beam welding[J]. Rare Metal Materials & Engineering, 2017(2): 496-502.
10 Zhao Y, Wang W, Yan K, et al. Microstructure and properties of Cu/Ti laser welded joints[J]. Journal of Materials Processing Technology, 2018, 257: 244-249.
11 Wei L, Zhang B, He J, et al. Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam[J]. Rare Metals, 2007(Sup.1): 344-348.
12 刘红, 任连保, 马余选, 等. TA2与T2异种金属焊接的工艺研究[J]. 钛工业进展, 2005, 22(4): 30-32.
Liu Hong, Ren Lian-bao, Ma Yu-xuan, et al. Dissimilar metal welding of TA2 and T2[J]. Titanium Industry Progress, 2005, 22(4): 30-32.
13 Shiue R K, Wu S K, Chan C H. Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3177-3186.
14 Shiue R K, Wu S K, Chan C H. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys[J]. Journal of Alloys & Compounds, 2004, 372(1/2): 148-157.
15 Kim S Y, Jung S B, Shur C C, et al. Mechanical properties of copper to titanium joined by friction welding[J]. Journal of Materials Science, 2003, 38(6): 1281-1287.
16 Kahraman N, Gülen B. Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process[J]. Journal of Materials Processing Technology, 2005, 169(1): 67-71.
17 Aydin K, Kaya Y, Kahraman N. Experimental study of diffusion welding/bonding of titanium to copper[J]. Materials & Design, 2012, 37: 356-368.
18 Zhou L, Min J, He W X, et al. Effect of welding time on microstructure and mechanical properties of Al-Ti ultrasonic spot welds[J]. Journal of Manufacturing Processes, 2018, 33: 64-73.
19 徐勇, 杨湘杰, 何毅, 等. TC4钛合金流动软化行为及本构模型研究[J]. 稀有金属材料与工程, 2017, 45(5): 1321-1326.
Xu Yong, Yang Xiang-jie, He Yi, et al. Flow softening behavior and constitutive equation of TC4 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2017, 45(5): 1321-1326.
20 宗跃, 吴玉程, 汪峰涛, 等. SiC和SiO2纳米颗粒弥散强化铜基复合材料的制备和性能研究[C]∥中国功能材料及其应用学术会议, 武汉, 2007: 511-513.
[1] 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652.
[2] 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106.
[3] 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90.
[4] 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001.
[5] 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009.
[6] 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599.
[7] 谷晓燕,刘东锋,刘婧,孙大千,马会峰. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607.
[8] 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614.
[9] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[10] 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271.
[11] 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279.
[12] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[13] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[14] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[15] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!