吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2486-2500.doi: 10.13229/j.cnki.jdxbgxb20210308

• 农业工程·仿生工程 • 上一篇    

鲜食玉米仿生摘穗柔性夹持输送装置设计与试验

朱光强1(),李天宇1,周福君2()   

  1. 1.东北农业大学 工程学院,哈尔滨 150030
    2.华北水利水电大学 机械学院,郑州 450046
  • 收稿日期:2021-08-20 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 周福君 E-mail:zhuguangqiang123@126.com;fjzhou@163.com
  • 作者简介:朱光强(1987-),男,博士研究生.研究方向:智能农业机械. E-mail:zhuguangqiang123@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0701905)

Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn

Guang-qiang ZHU1(),Tian-yu LI1,Fu-jun ZHOU2()   

  1. 1.College of Engineering,Northeast Agricultural University,Harbin 150030,China
    2.College of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450046,China
  • Received:2021-08-20 Online:2022-10-01 Published:2022-11-11
  • Contact: Fu-jun ZHOU E-mail:zhuguangqiang123@126.com;fjzhou@163.com

摘要:

针对鲜食玉米收获过程中茎秆夹持输送断茎、堵塞等问题,设计了一种结构简单、夹持输送稳定的仿生摘穗柔性夹持输送装置。首先,在分析握持茎杆自上而下弯折掰穗的基础上,研究了仿生摘穗原理,重点研究了影响茎秆柔性夹持、输送装置的作业参数,对装置采用分级试验方法,以单因素设计了台架试验,得到装置前进速度为1.2 m/s、割刀转速为420 r/min时作业效率最优;其次,固定两参数不变,以夹持输送带转速、夹持机构倾角和夹持输送带间隙为试验因素,以茎秆断茎率、夹持准确率为试验指标,采用二次回归正交旋转组合试验方法进行台架试验,通过Design-Expert8.0.6软件建立因素与指标的数学模型,增加约束后因素优化,试验结果表明,当夹持输送带转速为342 r/min、夹持机构倾角为19°、夹持输送带间隙为6.0 mm时,茎秆断茎率均值为0.46%、夹持准确率均值为94.0%,作业性能良好。最后,开展了田间验证试验,结果显示茎秆断茎率均值为0.55%、夹持准确率均值为93.0%,与优化结果基本一致,本文所设计的装置降低了茎秆断茎,稳定性较高,满足鲜食玉米果穗收获要求。

关键词: 农业机械化工程, 鲜食玉米, 仿生摘穗柔性夹持输送, 试验装置, 优化分析

Abstract:

Aiming at the problems of stem clamping and conveying, such as broken stems and blockages in the process of fresh corn harvesting, a bionic ear picking flexible clamping and conveying device with simple structure and stable clamping and conveying was designed. First, on the basis of analyzing the holding the stalk, bending and breaking the ears from top to bottom, researching the principle of bionic ear picking, the focus is on the operating parameters that affect the flexible stem clamping and conveying device. The grading test method is adopted for the device. The bench test was designed with a single factor, and it was obtained that the working efficiency was the best when the unit forward speed was 1.2 m/s and the cutter speed was 420 r/min. Secondly, fixing the two parameters unchanged and taking the speed of clamping conveyor belt, the inclination angle of clamping mechanism and the gap between clamping conveyor belt were taken as test factors, and the stem breaking rate and clamping accuracy were taken as test indexes, using the quadratic regression orthogonal rotation combination test method to carry out the bench test. The mathematical model of factors and indicators is established through Design-Expert8.0.6 software, and the factors are optimized after the constraints are added. The test results show that when the speed of the clamping conveyor belt is 342 r/min, the inclination angle of the clamping mechanism is 19°, and the clamping conveyor belt gap is 6.0 mm, the average value of stem broken rate is 0.46%, and the average value of clamping accuracy is 94.0%, which show a good working performance. Finally, a field verification experiment was carried out. The results show that the average stalk breaking rate was 0.55% and the average clamping accuracy rate was 93.0%, which were basically consistent with the optimized results. The device designed in this paper reduces the stalk breakage, has high stability, and meets the requirements for harvesting fresh corn ears.

Key words: agricultural mechanization engineering, fresh corn, bionic ear picking flexible clamping and conveying, experimental device, optimization analysis

中图分类号: 

  • S233.4

图1

装置试验台结构图1-果穗输送带; 2-倾角调节机构;3-割刀;4-土槽; 5-分禾器; 6- 柔性夹持输送机构; 7-机架;8-摘穗辊"

图2

柔性夹持输送机构图1-分禾器安装座; 2-拨禾朵轮; 3-前张紧轮; 4-机架; 5-间隙调节支架; 6-输送带导轮; 7-夹持输送带; 8-后张紧轮;9-主动带轮; 10-液压马达驱动孔; 11-玉米茎秆导轨"

图3

起轧角结构图1-拨禾朵轮; 2-夹持输送带; 3-玉米茎秆; 4-内输送带导轮;5-外侧输送带导轮; 6- 前张紧轮"

图4

拨禾朵轮内圆和梯形垄"

图5

拨禾朵轮"

图6

夹持输送机构示意图"

图7

茎秆受挤压强度"

图8

剪切载荷位移试验与曲线"

图9

夹持机构示意图"

图10

割刀示意图"

表1

京科糯2010参数测定"

参数项目均值参数项目均值
株高/mm2457籽粒含水率/%70
最低结穗高度/mm895果穗根部直径/mm45
果穗长度/mm189结穗位茎秆直径/mm36

图11

试验台实物图1-土槽试验台; 2-土槽试验台轨道;3-数据采集控制台;4-液压站; 5-倾角传感器; 6-柔性夹持输送机构; 7-鲜食玉米植株"

表2

因素编码表"

编码值因 素

夹持输送带

转速/(r·min-1

夹持机构

倾角/(°)

夹持输送带

间隙/mm

1.682664.82011.3
1563.1317.4910.08
041413.88.3
-1264.8710.116.52
-1.682163.27.65.3

表3

试验方案与结果"

编 号因素目标函数

夹持输送带转速

Z1/(°)

夹持机构倾角

Z2/(°)

夹持输送带间隙

Z3/(m·s-1

茎秆断茎率

Y1/%

夹持准确率

Y2/%

1264.8710.116.520.4794.11
2563.1310.116.520.2795.98
3264.8717.496.520.7292.45
4563.1317.496.520.7593.1
5264.8710.1110.080.4293.13
6563.1310.1110.080.5595.65
7264.8717.4910.080.1395.6
8563.1317.4910.080.6494.98
9163.213.88.30.3894.37
10664.813.88.30.7394.95
114147.68.30.2194.65
12414208.30.7593.68
1341413.85.30.5493.18
1441413.811.30.2193.68
1541413.88.30.2793.9
1641413.88.30.2293.87
1741413.88.30.1492.19
1841413.88.30.3792.89
1941413.88.30.4693.12
2041413.88.30.3192.43
2141413.88.30.2593.41
2241413.88.30.3192.76
2341413.88.30.2994.29

表4

茎秆断茎率方差分析"

来源平方和自由度均方FP
模型0.68/0.659/60.076/0.119.15/12.090.0003***/<0.0001***
Z10.12/0.121/10.12/0.1214.44/13.400.0022***/0.0021***
Z20.18/0.181/10.18/0.1821.44/19.900.0005***/0.0004***
Z30.096/0.0961/10.096/0.09611.58/10.750.0047***/0.0047***
Z1Z20.12/0.121/10.12/0.1214.19/13.170.0024***/0.0023***
Z1Z30.0251/10.0253.050.1042
Z2Z30.00661/10.00660.800.3880
Z120.096/0.0961/10.096/0.09611.61/10.740.00471***/0.0047***
Z220.042/0.0421/10.042/0.0425.04/4.660.0427**/0.0464**
Z320.0031/10.0030.390.5440
残差0.11/0.1413/160.0082/0.0089
失拟项0.042/0.0775/80.0085/0.00971.03/1.180.4593/0.4092
纯误差0.065/0.0658/80.0082/0.0082
总和0.7922

表5

夹持准确率方差分析"

来源平方和自由度均方FP
模型22.69/22.529/72.52/3.225.87/8.390.0023***/0.0003***
Z12.16/2.161/12.16/2.165.02/5.620.0431**/<0.0316**
Z22.66/2.661/12.66/2.666.19/6.920.0272**/0.0189**
Z31.50/1.501/11.50/1.503.50/3.910.0841*/0.0665*
Z1Z22.41/2.411/12.41/2.415.61/6.280.0340**/0.0242**
Z1Z30.0441/10.0440.100.7553
Z2Z35.07/5.071/15.07/5.0711.81/13.220.0044***/0.0024***
Z124.39/4.371/14.39/4.3710.21/11.400.0070***/0.0042***
Z124.42/4.411/14.41/4.4110.29/11.490.0069***/0.0040***
Z120.121/10.130.300.5918
残差5.58/5.7513/150.43/0.38
失拟项1.50/1.675/70.30/0.240.59/0.470.7099/0.8327
纯误差4.08/4.088/80.51/0.51
总和28.1722

图12

a 茎秆断茎率双因素响应曲面"

图13

田间试验"

1 井旭源, 唐春双, 于琳, 等. 鲜食玉米机械化收获发展现状[J]. 现代化农业, 2020, 41(10): 61-62.
Jing Xu-yuan, Tang Chun-shuang, Yu Lin, et al. Development status of mechanized harvesting of fresh corn[J]. Modern Agriculture, 2020, 41(10): 61-62.
2 Rogovskii I L, Liubarets 1 B S, Voinash S A,et al. Research of diagnostic of combine harvesters at levels of hierarchical structure of systems and units of hydraulic system[J]. Journal of Physics: Conference Series, 2020, 1679(4): No. 042038.
3 纪晓琦, 耿端阳, 姚艳春, 等. 玉米收获机激振摘穗装置设计与试验[J]. 农业机械学报, 2020, 51(): 126-133.
Ji Xiao-qi, Geng Duan-yang, Yao Yan-chun, et al. Design and test of the corn harvester's excitation vibration ear picking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.2): 126-133.
4 刘春鸽, 张喜瑞, 刘桐利, 等. 我国甜玉米收获机的发展现状[J]. 内燃机与配件, 2018, 38(15): 224-225.
Liu Chun-ge, Zhang Xi-rui, Liu Tong-li, et al. Developmentstatus of sweet corn harvesting machinery in China[J]. Internal Combustion Engine & Parts, 2018, 38(15): 224-225.
5 Vodounnou J H, Ajav E A, Bagan G C, et al. Development and performance evaluation of a small-scale maize harvester for developing countries[J]. Journal of Experimental Agriculture International, 2020, 42(8): 144-156.
6 刘传鑫.鲜食玉米收获割台关键技术研究[D]. 长春:吉林大学生物与农业工程学院,2019.
Liu Chuan-xin. Study on the key technology of fresh corn harvesting header[D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2019.
7 耿端阳,李玉环,何珂,等. 立辊式玉米收获机割台间隙夹持输送装置设计与试验[J]. 农业机械学报,2017, 48(11): 130-136.
Geng Duan-yang, Li Yu-huan, He Ke, et al. Design and experiment on gripping delivery mechanism for vertical-rollers type of corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 130-136.
8 张宗玲, 韩增德, 刘立晶, 等. 玉米穗茎兼收割台夹持输送装置参数优化[J]. 农业机械学报, 2018, 49(3): 114-121.
Zhang Zong-ling, Han Zeng-de, Liu Li-jing, et al. Parameters optimization for gripping and delivering device of corn harvester for reaping both corn stalk and spike[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 114-121.
9 张莉. 新型仿生玉米摘穗机构理论分析与仿真研究[D]. 长春: 吉林大学生物与农业工程学院,2015.
Zhang Li. Theoretical analysis and simulation study of a new bionic corn ear picking mechanism[D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2015.
10 辛尚龙. 立辊式玉米摘穗机理与关键技术研究[D]. 兰州: 甘肃农业大学机电工程学院, 2020.
Xin Shang-long. Study on mechanism and key technology of vertical roller corn ear picking[D]. Lanzhou: School of Mechanical and Electrical Engineering, Gansu Agricultural University, 2020.
11 范国强, 杨庆璐, 张晓辉, 等. 烟草夹持式智能打顶机设计与试验[J]. 农业机械学报, 2017, 48(7): 121-126.
Fan Guo-qiang, Yang Qing-lu, Zhang Xiao-hui, et al. Design and test of intelligent tobacco topping machine with clamping belt[J]. Beijing: Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 121-126.
12 中国农业机械化科学研究院.农业机械设计手册:上册[M]. 北京:中国农业科学技术出版社,2007.
13 Shinners K J, Boettcher G C, Hoffman D S, et al. Single-pass harvest of corn grain and stover:performance of three harvester configurations[J]. Transactions of the ASABE, 2009, 52(1): 51-60.
14 Johnson P C, Clementson C L, Mathanker S K, et al. Cutting energy characteristics of Miscanthus giganteus stems with varying oblique angle and cutting speed[J]. Biosystems Engineering, 2012, 112(1): 42-48.
15 耿端阳,李玉环,孟凡虎,等.玉米收获机多棱立辊式摘穗装置设计与试验[J]. 农业机械学报,2017, 48(3): 84-91.
Geng Duan-yang, Li Yu-huan, Meng Fan-hu, et al. Design and experiment of corn harvester polygonal vertical-rollers snapping means[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3): 84-91.
16 郝付平, 陈志, 张子瑞, 等. 拨禾星轮式玉米收获台设计与试验[J]. 农业机械学报,2014, 45(6): 112-117.
Hao Fu-ping, Chen Zhi, Zhang Zi-rui, et al. Design and experiment of corn harvester head with Reel Star wheel[J]. Transactions of the Chinese Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 112-117.
17 张宗玲. 新型玉米穗茎联合收获机割台的研制[D].北京: 中国农业大学工学院,2018.
Study on A New Corn Combine Harvester Header for Reaping Both Corn Stalk and Spike[D]. Beijing: College of Engineering,China Agricultural University, 2018.
18 李天宇. 鲜食玉米柔性低损摘穗装置设计与试验[D]. 哈尔滨:东北农业大学工程学院, 2019.
Li Tian-yu. Design and experiment of flexible and low loss ear picking device for fresh corn[D]. Harbin: College of Engineering, Northeast Agricultural University, 2019.
19 刘静, 刁培松, 张道林, 等. 玉米收获机分禾器的研究[J]. 农机化研究, 2007, 28(11): 145-146, 149.
Liu Jing, Diao Pei-song, Zhang Dao-lin. Research on the nearside divider of corn harvest[J]. Journal of Agricultural Mechanization Research, 2007, 28(11): 145-146, 149.
20 吴鸿欣, 陈志, 韩增德, 等. 玉米植株抗弯特性对分禾器结构的影响分析[J].农业机械学报, 2011, 42(): 6-9.
Wu Hong-xin, Chen Zhi, Han Zeng-de, et al.Effect analysis of bending properties of corn plants on divider structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(): 6-9.
21 王优, 张强, 于路路. 玉米摘穗装置的应用现状与展望[J]. 农机化研究, 2011, 33(1): 228-231.
Wang You, Zhang Qiang, Yu Lu-lu. Application status and prospect of maize maize picking device[J]. Harbin: Journal of Agricultural Mechanization Research, 2011, 33(1): 228-231.
22 张宗玲, 韩增德, 李树君, 等. 玉米穗茎兼收割台切割夹持输送装置仿真与试验[J]. 农业机械学报,2016, 47(): 215-221.
Zhang Zong-ling, Han Zeng-de, Li Shu-jun, et al. Simulation and experiment of cutting, clamping and conveying device for corn ear stem and harvester[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(Sup.1): 215-221.
23 杨庆璐. 烟草夹持式智能打顶机的研制与试验[D]. 泰安:山东农业大学机械与电子工程学院, 2018.
Yang Qing-lu. Development and test of tobacco clamping intelligent topping machine[D]. Taian: School of Mechanical and Electronic Engineering, Shandong Agricultural University, 2018.
24 董瑞. 青贮玉米收获割台切割过程仿真及试验研究[D]. 长春:吉林大学生物与农业工程学院,2020.
Dong Rui. Simulation and experimental study on cutting process of silage corn harvesting header [D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2020.
25 Wang Chen, Cao Shun-kun, Gao Kui-zeng, et al. Intelligent control system for corn harvester[J]. Journal of Physics: Conference Series, 2021, 1798(1): No. 012011.
26 贾洪雷, 王刚, 赵佳乐, 等. 间距自适应差速玉米摘穗辊设计与试验[J]. 农业机械学报,2015, 46(3): 97-102.
Jia Hong-lei, Wang Gang, Zhao Jia-le, et al.Design and experiment of spacing-adaptive differential snapping rollers for corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 97-102.
27 王刚, 贾洪雷, 赵佳乐, 等. 玉米留高茬切割器的设计及留茬效果试验[J]. 农业工程学报, 2014, 30(23):43-49.
Wang Gang, Jia Hong-lei, Zhao Jia-le, et al. Design of corn high-stubble cutter and experiments of stubble retaining effects[J]. Beijing: Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 43-49.
28 赵淑红, 谭贺文, 王加一, 等. 多功能集成式播种开沟器的设计与试验[J]. 农业工程学报, 2018, 34(11):58-67.
Zhao Shu-hong, Tan He-wen, Wang Jia-yi, et al. Design and experiment of multifunctional integrated seeding opener[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 58-67.
29 赵艳忠, 王运兴, 刘海涛, 等. 带状深松灭茬机灭茬部件设计与试验[J]. 农业机械学报, 2018, 49(3):94-103.
Zhao Yan-zhong, Wang Yun-xing, Liu Hai-tao, et al. Design and test of stubble-breaking components on strip subsoiling and stubble-breaking machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 49(3): 94-103.
30 陈洋,连永祥,李新. 二次回归正交旋转组合设计优化废橡胶辊筒粉碎机效率[J]. 沈阳化工大学学报,2012, 26(3):251-254.
Chen Yang, Lian Yong-xiang, Li Xin.Rubber roller mill efficiency with the method of quadratic regression orthogonal rotation[J]. Journal of Shenyang University of Chemical Technology, 2012, 26(3): 251-254.
31 肖宝兰,俞小莉,韩松,等. 翅片参数对车用中冷器流动传热性能的影响[J]. 浙江大学学报: 工学版, 2010, 44(11): 2164-2168, 2178.
Xiao Bao-lan, Yu Xiao-li, Han Song,et al.The study of effects of fin parameters on thermal hydraulic performance of a vehicular charged air cooler[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(11): 2164-2168, 2178.
32 葛宜元, 梁秋艳, 王桂莲. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社,2015.
33 谭贺文. 一种组合式播种开沟器的设计与试验[D].哈尔滨:东北农业大学工程学院,2018.
Tan He-wen. Design and test of a combined sowing furrow opener[D]. Harbin: College of Engineering,Northeast Agricultural University, 2018.
34 玉米收获机械技术条件 [S].
[1] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[2] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[3] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[4] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[5] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[6] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
[7] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[8] 程超,付君,郝付平,陈志,周德义,任露泉. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报(工学版), 2020, 50(1): 351-360.
[9] 程超,付君,唐心龙,陈志,任露泉. 振动形式对水稻脱出物界面粘附规律的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1228-1235.
[10] 付君,钱志辉,尹维,王甲甲,任露泉. 小麦摩擦与拉伸性能[J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
[11] 王丽丽1,2, 杨印生1,3, 王忠江2. 北方大型沼气工程加热保温系统优化[J]. 吉林大学学报(工学版), 2011, 41(4): 1183-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!