吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2644-2652.doi: 10.13229/j.cnki.jdxbgxb20210393

• 交通运输工程·土木工程 • 上一篇    

不同吊杆形式悬索桥人致振动分析及舒适度评价

张彦玲1,2(),王灿1,2,张旭1,2,王昂洋3,李运生1,2()   

  1. 1.石家庄铁道大学 土木工程学院,石家庄 050043
    2.石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室,石家庄 050043
    3.国网河北省电力有限公司 沧州市供电分公司,河北 沧州 061000
  • 收稿日期:2021-05-06 出版日期:2022-11-01 发布日期:2022-11-16
  • 通讯作者: 李运生 E-mail:06mzhang@163.com;liysh70@163.com
  • 作者简介:张彦玲(1973-),女,教授,博士. 研究方向:桥梁结构分析,组合结构桥梁. E-mail: 06mzhang@163.com
  • 基金资助:
    国家自然科学基金项目(51778377);河北省自然科学基金项目(E2019210311)

Human⁃induced vibration analysis and pedestrian comfort evaluation for suspension footbridge with different hunger systems

Yan-ling ZHANG1,2(),Can WANG1,2,Xu ZHANG1,2,Ang-yang WANG3,Yun-sheng LI1,2()   

  1. 1.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.Cangzhou Power Supply Branch of State Grid Hebei Electric Power Co. ,Ltd. ,Cangzhou 061000,China
  • Received:2021-05-06 Online:2022-11-01 Published:2022-11-16
  • Contact: Yun-sheng LI E-mail:06mzhang@163.com;liysh70@163.com

摘要:

为研究结构细节对人行悬索桥人致振动响应及行人舒适度的影响,以某人行玻璃悬索桥为工程实例,分别建立了竖直吊杆模型和倾斜吊杆模型,分析了不同吊杆对自振特性和人致振动响应的影响,并基于德国EN03规范对行人舒适度进行了评估.结果表明:竖直吊杆模型横向及竖向基频均小于倾斜吊杆模型,但两种吊杆模型下该桥的振动频率均较低,说明结构整体柔性较大;两种吊杆模型中,计入人群质量后,各阶自振频率和主梁最大加速度均随行人密度的增加而减小;同一人流量下,主梁在对应不同模态的行人步频下加速度最大值均不同,但同一工况下倾斜吊杆模型的横弯和竖弯加速度数值均较竖直吊杆模型有所下降;两种吊杆模型的横向舒适度综合评价相同,竖向舒适度综合评价倾斜吊杆模型更优,倾斜吊杆可以有效加强改人行悬索桥的横向和竖向刚度。

关键词: 桥梁工程, 人行悬索桥, 自振特性, 人致振动, 行人舒适度

Abstract:

To research the influence of the structural details on the human-induced vibration and pedestrian comfort of the suspension footbridge, based on a practical suspension footbridge, two different structural models, one with vertical hanger system and the other with inclined hanger system, were built. The influence of different hanger systems on the free vibration and human-induced vibration were analyzed, and the pedestrian comfort was evaluated based on EN03 code. The results show that, the first-order vertical and lateral frequencies of the inclined hanger system model are lower than those of the vertical one, and both two hanger system model have low free vibration frequencies and corresponding high flexibility. When the pedestrian mass is considered, the free vibration frequencies and the maximum accelerator of the main girder under pedestrian load decrease with the increase of the pedestrian flow for both two models. Under the same pedestrian flow, the maximum accelerators according to different mode and free frequency are different, but the inclined hanger system model has lower lateral and vertical accelerators compared to the vertical one. The lateral comfort evaluation result is same for two models, but the vertical comfort evaluation is better for the inclined hanger system model. The inclined hangers can improve both the lateral and vertical rigidities of the suspension footbridge.

Key words: bridge engineering, suspension footbridge, natural vibration characteristics, human-induced vibration, pedestrian comfort

中图分类号: 

  • U448.25

图1

人行悬索桥布置图"

图2

有限元模型"

表1

竖直吊杆和倾斜吊杆模型自振频率及振型"

模态竖直吊杆模型倾斜吊杆模型
自振频率 /Hz振型描述自振频率 /Hz振型描述
10.185对称横弯0.258反对称横弯
20.190对称竖弯0.266对称横弯
30.211反对称横弯0.319对称竖弯
40.250对称竖弯0.366反对称竖弯
50.329反对称横弯0.393反对称横弯
60.347对称竖弯0.395对称横弯
70.369反对称竖弯0.406反对称竖弯
80.393反对称横弯0.410对称竖弯
90.393对称竖弯0.450对称竖弯
100.393反对称横弯0.451对称竖弯

表2

竖向和横向步频范围内两种吊杆模型的自振频率及振型"

竖直吊杆模型倾斜吊杆模型
方向

模态

阶数

振动

阶数

自振频率/Hz主梁振型图

模态

阶数

振动

阶数

自振频率/Hz主梁振型图
横向2130.5651530.551
2840.7332540.662
4151.0343650.909
4761.1493861.116
竖向53131.3434871.410
60141.4705581.455
65151.6086191.655
70161.74568101.842
75171.89374112.111
82182.04180122.175
87192.200
93202.360

表3

两种吊杆模型下不同行人密度下的自振频率 (Hz)"

振动模态竖直吊杆模型倾斜吊杆模型
振动阶数成桥态行人密度/(人?m-2振动阶数成桥态行人密度/(人?m-2
0.511.520.511.52
主梁横弯30.5650.5530.5440.5300.52030.5510.5490.5470.5460.545
40.7330.7190.7020.6680.66640.6650.6480.6330.6170.602
51.0341.0050.9570.9130.95950.9090.8890.8690.8510.835
61.1491.1211.0961.0671.04561.1161.1141.1091.1001.084
主梁竖弯131.3431.3091.2771.2471.24471.4101.4101.3881.3571.298
141.4701.4331.4231.3651.33581.4551.4211.4101.3541.329
151.6081.5991.5991.5991.45991.6551.6261.5891.5541.521
161.7451.7001.6581.6201.584101.8421.8191.7791.7391.715
171.8931.8451.8001.7581.713112.1112.0622.0362.0332.032
182.0411.9891.9401.8951.853122.3282.2732.2292.2222.222
192.2002.1462.0942.0451.999
202.3602.2992.2432.1912.142

图3

折减系数ψ值"

表4

竖直吊杆模型中横弯模态上行人谐波荷载P(t)(1人/m2)"

振动

阶数

不计入行人质量计入行人质量
步频 /HzPt)/(N·m-2步频 /HzPt)/(N·m-2
30.5655.8cos(3.55t0.5443.9cos(3.42t
40.73317.6cos(4.60t0.70217.6cos(4.40t
51.03414.6cos(6.49t0.95717.6cos(6.00t
61.1494.5cos(7.21t1.0969.2cos(6.88t

表5

竖直吊杆模型中竖弯模态上行人谐波荷载P(t) (1人/m2)"

振动阶数不计入行人质量计入行人质量
步频/HzPt)/(N·m-2步频/HzPt)/(N·m-2
131.34329.8cos(8.43t1.2779.2cos(8.02t
141.47069.6cos(9.23t1.42354.9cos(8.93t
151.608113cos(10t1.599110cos(10.04t
161.745141cos(11.95t1.658128cos(10.41t
171.893141cos(11.88t1.800141cos(11.3t
182.041141cos(12.81t1.940141cos(12.18t
192.20071cos(13.81t2.094141cos(13.15t
202.360-2.24340.2cos(14.08t

图4

横弯振型加载图示(水平向加载)"

图5

竖弯振型加载图示(竖向加载)"

图6

1 人/m2时的主梁跨中加速度时程曲线图"

图7

不同行人密度下竖直吊杆模型主梁横弯加速度最大值"

图8

不同行人密度下竖直吊杆模型主梁竖弯加速度最大值"

图9

不同行人密度下倾斜吊杆模型主梁横弯加速度最大值"

图10

不同行人密度倾斜吊杆模型主梁竖弯加速度最大值"

表6

德国EN03规范舒适度评价标准"

等级舒适度横向加速度 限值/(m·s-2竖向加速度 限值/(m·s-2
1很舒适≤0.1≤0.5
2中等舒适0.1~0.30.5~1.0
3不舒适0.3~0.81.0~2.5
4不可忍受>0.8>2.5

图11

竖直吊杆模型主梁加速度极值及舒适度评价"

图12

倾斜吊杆模型主梁加速度极值及舒适度评价"

表7

竖直吊杆模型行人舒适度评价结果"

行人密度/(人·m-2不计人群质量计入人群质量
横向竖向综合横向竖向综合
0.5111111
1.0122122
1.5122122
2.0222122

表8

倾斜吊杆模型行人舒适度评价结果"

行人密度/(人·m-2不计人群质量计入人群质量
横向竖向综合横向竖向综合
0.5111111
1.0122111
1.5122122
2.0122122
1 陈舟, 颜全胜, 贾布裕, 等. 行走激励下人行桥振动响应简化计算[J]. 哈尔滨工程大学学报, 2018, 39(3): 483-489.
Chen Zhou, Yan Quan-sheng, Jia Bu-yu, et al. Simplified calculation on the vibration response of a footbridge under human walking loads[J]. Journal of Harbin Engineering University, 2018, 39(3): 483-489.
2 李泽民,吴冬雁,刘宣含,等. 真实步伐荷载作用下人行桥振动及共振加速分析[J]. 噪声与振动控制, 2019, 39(6): 164-168.
Li Ze-min, Wu Dong-yan, Liu Xuan-han, et al. Vibration and resonance response analysis of footbridges under actual walking load[J]. Noise and Vibration Control, 2019, 39(6): 164-168.
3 汪志昊,寇琛,刘召朋,等. 人体姿态对人-结构耦合系统竖向动力特性影响试验研究[J]. 振动与冲击,2019, 38(19): 58-63.
Wang Zhi-hao, Kou Chen, Liu Zhao-peng, et al. Tests for effects of human body posture on vertical dynamic characteristics of a human- structure interaction system[J]. Jounal of Vibation and Shock, 2019, 38(19): 58-63.
4 谢伟平,汤宗恒,何卫. 多人-桥竖向动力相互作用研究[J]. 振动与冲击, 2020, 39(11): 76-82.
Xie Wei-ping, Tang Zong-heng, He Wei. Study on vertical vibration of bridge-pedestrians dynamic interaction system[J]. Journal of Vibration and Shock, 2020, 39(11): 76-82.
5 张琼, 南娜娜, 朱前坤, 等. 基于社会力模型的人群-桥梁竖向动力耦合效应研究[J]. 振动与冲击,2020, 39(9): 71-79.
Zhang Qiong, Na-na Nan, Zhu Qian-kun, et al. Analysis on the vertical coupled dynamic effect of a crowd-bridge system based on the social force model [J]. Journal of Vibration and Shock, 2020, 39(9):71-79.
6 操礼林,吕亚兵,曹栋,等. 行人动力学参数对大跨简支人行桥人致振动的影响分析[J]. 东南大学学报: 自然科学版, 2020, 50(2): 260-266.
Cao Li-lin, Ya-bing Lyu, Cao Dong, et al. Influence analysis of pedestrian dynamic parameters on human- induced vibration of long span simply supported footbridge[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 260-266.
7 王晋平,熊杰程,陈隽.人群步行荷载的互谱模型及应用[J]. 土木工程学报, 2020, 53(7): 12-20.
Wang Jin-ping, Xiong Jie-cheng, Chen Jun. Cross-spectral model for crowd walking load and its application[J]. China Civil Engineering Journal, 2020, 53(7): 12-20.
8 贾布裕,颜全胜,余晓琳,等. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155-164.
Jia Bu-yu, Yan Quan-sheng, Yu Xiao-lin, et al. Stability analysis on pedestrian-induced lateral vibration of footbridges considering pedestrian stochastic excitation[J]. Engineering Mechanics, 2019, 36(1): 155-164.
9 Han H, Zhou D, Ji T, et al. Modelling of lateral forces generated by pedestrians walking across footbridges[J]. Applied Mathematical Modelling, 2021, 89: 1775-1791.
10 Lai E, Gentile C, Mulas M G. Experimental and numerical serviceability assessment of a steel suspension footbridge[J]. Journal of Constructional Steel Research, 2017, 132: 16-28.
11 Bedon C. Diagnostic analysis and dynamic identification of a glass suspension footbridge via on-site vibration experiments and FE numerical modeling[J]. Composite Structures, 2019, 216: 366-378.
12 Bedon C. Experimental investigation on vibration sensitivity of an indoor glass footbridge to walking conditions[J]. Journal of Building Engineering, 2020, 29: 1-17.
13 邹卓,宋旭明,李璋,等. 基于TMD的自锚式人行悬索桥人致振动控制研究[J]. 铁道科学与工程学报, 2018, 15(10): 2574-2582.
Zou Zhuo, Song Xu-ming, Li Zhang, et al. Study of pedestrian-induced vibration of self-anchored suspension footbridge based on TMD[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2574-2582.
14 Dong C Z, Bas S, Catbas N. Investigation of vibration serviceability of a footbridge using computer vision-based methods[J]. Engineering Structures, 2020, 224: 1-13.
15 Pampa D, Sriram N, Scott W. Reliability-based assessment and calibration of standards for the lateral vibration of pedestrian bridges[J]. Engineering Structures, 2021, 239: 1-13.
16 Research Fund for Coal and Steel, HiVoSS: Design of Footbridges [S].
17 王保群,张强勇,张凯,等. 自锚式斜拉-悬吊协作体系桥梁动力性能[J]. 吉林大学学报: 工学版, 2009, 39(3): 686-690.
Wang Bao-qun, Zhang Qiang-yong, Zhang Kai, et al. Dynamic characteristics for self-anchored cable-stayed suspension bridges[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(3): 686-690.
18 钟昌均,王忠彬,柳晨阳.悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报: 工学版, 2021, 51(6): 2068-2078.
Zhong Chang-jun, Wang Zhong-bin, Liu Chen-yang. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[1] 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816.
[2] 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873.
[3] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[4] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[5] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
[6] 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603.
[7] 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596.
[8] 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232.
[9] 陈华,陈耀嘉,谢斌,王鹏凯,邓朗妮. CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算[J]. 吉林大学学报(工学版), 2020, 50(5): 1698-1708.
[10] 宫亚峰,宋加祥,毕海鹏,谭国金,胡国海,林思远. 装配式箱涵结构缩尺模型静载试验及有限元分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1728-1738.
[11] 高昊,王君杰,刘慧杰,王剑明. 连续梁桥地震行为可控设计准则及实用装置[J]. 吉林大学学报(工学版), 2020, 50(5): 1718-1727.
[12] 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612.
[13] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[14] 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226.
[15] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!