吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2954-2963.doi: 10.13229/j.cnki.jdxbgxb20210481

• 计算机科学与技术 • 上一篇    下一篇

基于语义耦合和身份一致性的跨模态行人重识别方法

侯春萍(),杨庆元,黄美艳,王致芃   

  1. 天津大学 电气自动化与信息工程学院,天津 300072
  • 收稿日期:2021-05-31 出版日期:2022-12-01 发布日期:2022-12-08
  • 作者简介:侯春萍(1957-),女,教授,博士. 研究方向:模式识别,数字图像处理,计算机视觉. E-mail:hcp@tju.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(61731003)

Cross⁃modality person re⁃identification based on semantic coupling and identity⁃consistence constraint

Chun-ping HOU(),Qing-yuan YANG,Mei-yan HUANG,Zhi-peng WANG   

  1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
  • Received:2021-05-31 Online:2022-12-01 Published:2022-12-08

摘要:

针对跨模态行人重识别面临的较大跨模态差异和类内变化的问题,提出了一种基于语义耦合和身份一致性的跨模态行人重识别方法。在语义层面,通过双向耦合不同模态的语义特征,实现不同模态间语义的交互融合,有效缓解了跨模态差异;在行人身份层面,通过优化跨模态三元组损失和身份损失,实现类内身份信息一致性,有效缓解了类内变化问题。实验结果表明,本文算法能够有效提升跨模态行人重识别精度,与基线方法相比,Top-1和mAP指标精度提升了10%以上。

关键词: 计算机应用, 跨模态行人重识别, 深度学习, 语义耦合, 身份一致性约束

Abstract:

To solve the problem of the large inter-modality discrepancy and the intra-class variations in cross modality person re-Identification (CM-Reid), a novel CM-Reid framework based on semantic coupling and identity-consistence constraint was proposed. In the semantic level, the semantic representations bi-directionally and fuse the semantic information between different modalities were coupled to alleviate the inter-modality discrepancy. In the identity level, the cross-modality triplet loss and identity loss to maintain the identity consistence were optimized to alleviate the intra-class variations. The experimental results show that the proposed method can effectively improve the performance of CM-Reid. Compared with the baseline method, the accuracy of Top-1 and mAP indicators is improved by more than 10%.

Key words: computer application, cross-modality person re-identification, deep learning, semantic coupling, identity-consistence constrain

中图分类号: 

  • TP391

图1

本文模型的网络框架"

图2

语义耦合模块"

表1

语义耦合模块有效性对比 (%)"

序号方法All SearchIndoor Search
Top-1mAPTop-1mAP
1Baseline45.8144.8547.0646.13
2Baseline+SCM_block146.0145.1547.9846.05
3Baseline+SCM_block248.9748.0050.1049.25
4Baseline+SCM_block354.1052.6155.8352.96
5Baseline+SCM_block457.8555.3358.1556.19

表2

跨模态三元组损失有效性的验证 (%)"

方法All SearchIndoor Search
Top-1mAPTop-1mAP
155.9254.2056.8554.92
257.8555.3358.1556.19

表3

SYSY-MM01数据集的对比实验 (%)"

方法All SearchIndoor Search
Top-1Top-10Top-20mAPTop-1Top-10Top-20mAP
One-stream712.0449.6866.7413.6716.9463.5582.1022.95
Two-stream711.6547.9965.5012.8515.6061.1881.0221.49
Zero-Padding714.8054.1271.3315.9520.5868.3885.7926.92
SDL1628.1270.2383.6729.0132.5680.4590.6739.56
MSR1737.3583.4093.3438.1139.6489.2997.6650.88
MACE1851.6487.2594.4450.1157.3593.0297.4764.79
HSM920.6832.7477.9523.21----
BDTR1927.3266.9681.0727.3231.9277.1889.2841.86
eBDTR1927.8267.3481.3428.4232.4677.4289.6242.46
expAT2038.5776.6486.3938.6144.7169.8277.8732.20
CMSP2143.5686.25-44.9848.6289.50-57.50
cmGAN2226.9767.5180.5631.4931.6377.2389.1842.19
D2RL1128.9070.6082.4029.20----
JSIA2338.1080.7089.9036.9043.8086.2094.2052.90
AliGAN1042.4085.0093.7040.7045.9087.6094.4054.30
本文57.8589.2594.4555.3358.1590.0295.6356.19

表4

RegDB数据集的对比实验 (%)"

方法RGB→ThermalThermal→RGB
Top-1Top-10Top-20mAPTop-1Top-10Top-20mAP
Zero-Padding717.7534.2144.3518.9016.6334.6844.2517.82
SDL1626.4751.3461.2223.5825.7450.2359.6622.89
MSR1748.4370.3279.9548.67----
MACE1872.3788.4093.5969.0972.1288.0793.0768.57
BDTR1933.5658.6167.4332.7632.9258.4668.4331.96
eBDTR1934.6258.9668.7233.4634.2158.7468.6432.49
HSME950.8573.3681.6647.0050.1572.4081.0746.16
expAT2067.45--66.5166.48--67.31
CMSP2165.0783.71-64.50----
D2RL1143.4066.1076.3044.10----
JSIA2348.50--48.90----
AliGAN1057.90--53.6056.30--53.40
本文75.1290.5696.0974.5174.9691.0295.7676.10

图3

RGB图像对红外图像的检索结果"

图4

红外图像对RGB图像的检索结果"

1 Ye Mang, Shen Jian-bing, Lin Gao-jie, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
2 Zhong Zhun, Zheng Liang, Luo Zhi-ming, et al. Learning to adapt invariance in memory for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2723-2738.
3 Qian Xue-lin, Fu Yan-wei, Tao Xiang, et al. Leader-based multi-scale attention deep architecture for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(2): 371-385.
4 马淼, 王云涛, 潘海鹏. 基于注意力机制和空间几何约束的行人重识别方法[J]. 吉林大学学报: 工学版, 2022, 52(5): 1079-1087.
Ma Miao, Wang Yun-tao, Pan Hai-peng. Person re-identification method based on attention mechanism and spatial geometric constraint[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1079-1087.
5 Chen Guang-yi, Lu Ji-wen, Yang Ming, et al. Learning recurrent 3D attention for video-based person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 6963-6976.
6 Wang K, Ding C, Maybank S J, et al. CDPM: convolutional deformable part models for semantically aligned person re-identification[J]. IEEE Transactions on Image Processing, 2019, 29: 3416-3428.
7 Wu A, Zheng W S, Yu H X, et al. RGB-infrared cross-modality person re-identification[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5380-5389.
8 Ye Mang, Wang Zheng, Lan Xiang-yuan, et al. Visible thermal person re-identification via dual-constrained top-ranking[C]∥International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018:1092-1099.
9 Hao Yi, Wang Nan-nan, Li Jie, et al. HSME: hypersphere manifold embedding for visible thermal person re-identification[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Hawaii, USA,2019: 8385-8392.
10 Wang Guan-an, Zhang Tian-zhu, Cheng Jian, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3623-3632.
11 Wang Zhi-xiang, Wang Zheng, Zheng Yin-qiang, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 618-626.
12 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248-255.
13 He Kai-ming, Zhang Xiang-yu, Ren Shao-qing, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
14 Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-identification[DB/OL]. [2020-12-03].
15 Nguyen D T, Hong H G, Kim K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): No.605.
16 Kansal K, Subramanyam A V, Wang Z, et al. SDL: spectrum-disentangled representation learning for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3422-3432.
17 Feng Zhan-xiang, Lai Jian-hua, Xie Xiao-hua. Learning modality-specific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2019, 29: 579-590.
18 Ye Mang, Lan Xiang-yuan, Leng Qing-ming, et al. Cross-modality person re-identification via modality-aware collaborative ensemble learning[J]. IEEE Transactions on Image Processing, 2020, 29: 9387-9399.
19 Ye Mang, Lan Xiang-hua, Wang Zheng, et al. Bi-directional center-constrained top-ranking for visible thermal person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 407-419.
20 Ye Han-rong, Liu Hong, Meng Fan-yang, et al. Bi-directional exponential angular triplet loss for RGB-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2021, 30: 1583-1595.
21 Wu An-cong, Zheng Wei-shi, Gong Shao-gang, et al. RGB-IR person re-identification by cross-modality similarity preservation[J]. International Journal of Computer Vision, 2020, 128(6): 1765-1785.
22 Dai P Y, Ji R R, Wang H B, et al. Cross-modality person re-identification with generative adversarial training[C]∥Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden: 2018: 677-683.
23 Wang G A, Zhang T, Yang Y, et al. Cross-modality paired-images generation for RGB-infrared person re-identification[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12144-12151.
24 胡静,陶洋.基于RPCA的群稀疏表示人脸识别方法[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(3): 459-468.
Hu Jing, Tao Yang. Group sparse representation face recognition method based on RPCA[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(3): 459-468.
25 李新春,马红艳,林森.基于局部邻域四值模式的掌纹掌脉融合识别[J].重庆邮电大学学报: 自然科学版, 2020, 32(4): 630-638.
Li Xin-chun, Ma Hong-yan, Lin Sen. Palmprint and palm vein fusion recognition based on local neighbor quaternary pattern[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 47(5): 285-291, 300.
[1] 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575.
[2] 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592.
[3] 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487.
[4] 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583.
[5] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
[6] 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841.
[7] 申铉京,张雪峰,王玉,金玉波. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1857-1864.
[8] 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871.
[9] 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880.
[10] 李晓英,杨名,全睿,谭保华. 基于深度学习的不均衡文本分类方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1889-1895.
[11] 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856.
[12] 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888.
[13] 胡丹,孟新. 基于时变网格的对地观测卫星搜索海上船舶方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1896-1903.
[14] 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665.
[15] 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 安实,李静,崔娜 . ATIS环境下通勤者逐日出行路径更换行为仿真[J]. 吉林大学学报(工学版), 2009, 39(03): 587 -0592 .
[2] 段,孙同景,李振华, 黄长伟, 张光先. 全数字逆变电源IIR Butterworth数字滤波[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[3] 金敬福, 马毅, 刘玉荣, 丛茜. 长耳鸮翼型组的气动特性分析[J]. 吉林大学学报(工学版), 2010, 40(增刊): 278 -0281 .
[4] 金立生,王荣本,高龙,郭烈. 基于区域生长的智能车辆阴影路径图像分割方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[5] 王强,戴景民,何小瓦. 时间延迟对瞬态平面热源法测量热导率的影响[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[6] 麻凯1,2,管欣1,2,逄淑一1,2,詹军1,2. 悬架运动学特性一致性的区间控制方法[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[7] 吉林大学学报(工学版)编辑部.

吉林大学学报(工学版)2007年第6期目录

[J]. 吉林大学学报(工学版), 2007, 37(06): 0 .
[8] 魏海斌,刘寒冰,高一平,李长雨,方瑛 . 冻融循环对粉煤灰土动强度的影响[J]. 吉林大学学报(工学版), 2007, 37(02): 329 -0333 .
[9] 孟广伟,李锋,赵云亮. 基于随机有限元法的疲劳断裂可靠性分析[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 16 -0019 .
[10] 郭孜政, 陈崇双, 王欣, 陈亚青, 谭永刚. 基于FCM的驾驶行为险态辨识模型[J]. 吉林大学学报(工学版), 2010, 40(02): 427 -0430 .