吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 584-592.doi: 10.13229/j.cnki.jdxbgxb20210618
时小虎1,2(),吴佳琦1,吴春国1,2,程石1,翁小辉3,常志勇4,5()
Xiao-hu SHI1,2(),Jia-qi WU1,Chun-guo WU1,2,Shi CHENG1,Xiao-hui WENG3,Zhi-yong CHANG4,5()
摘要:
本文以提高弯道检测效果为主要目的,并综合考虑检测速度,提出了一种基于残差网络的弯道增强车道线检测方法。该方法采用残差网络为主体框架,通过在损失函数中加入弯道结构约束条件实现弯道增强;另一方面,为降低模型的复杂度,采用权值稀疏剪枝技术对模型进行缩减。实验结果表明:本文提出的弯道增强策略有效提高了在弯道场景下的算法性能,且对直线车道的检测性能影响较小。加入了权值稀疏剪枝策略之后,算法在性能未明显下降的前提下大幅度减少了计算时间,更符合实际生产需求。
中图分类号:
1 | Xu Z, Shin B, Klette R. Accurate and robust line segment extraction using minimum entropy with hough transform[J]. IEEE Transactions Image Process, 2015, 24(3): 813-822. |
2 | Hillel A B, Lerner R, Levi D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. |
3 | Lookingbill A, Rogers J, Lieb D, et al. Reverse optical flow for self-supervised adaptive autonomous robot navigation[J]. International Journal of Computer Vision, 2007, 74(3): 287-302. |
4 | Li X Y, Fang X Z, Wang C, et al. Lane detection and tracking using a parallel-snake approach[J]. Journal of Intelligent & Robotic Systems, 2015, 77(3): 597-609. |
5 | Borkar A, Hayes M, Smith M T. Polar randomized hough transform for lane detection using loose constraints of parallel lines[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 1037-1040. |
6 | Lee C, Moon J H. Robust lane detection and tracking for real-time applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 4043-4048. |
7 | Suddamalla U, Kundu S, Farkade S, et al. A novel algorithm of lane detection addressing varied scenarios of curved and dashed lanemarks[C] ∥International Conference on Image Processing Theory, Tools and Applications, Orléans, France, 2015: 87-92. |
8 | 贾阳, 王荣本, 余天洪, 等. 基于熵最大化边缘提取的直线型车道标识线识别及跟踪方法[J]. 吉林大学学报: 工学版, 2005, 35(4): 420-425. |
Jia Yang, Wang Rong-ben, Yu Tian-hong, et al. Linear lane mark identification and track method based on entropy maximization edge extraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 420-425. | |
9 | Jung C R, Kelber C R. An improved linear-parabolic model for lane following and curve detection[C]∥XVIII Brazilian Symposium on Computer Graphics and Image Processing, Natal, Brazil, 2005: 131-138. |
10 | 吴骅跃, 段里仁. 基于RGB熵和改进区域生长的非结构化道路识别方法[J]. 吉林大学学报: 工学版, 2019, 49(3): 727-735. |
Wu Hua-yue, Duan Li-ren. Unstructured road detection method based on RGB entropy and improved region growing[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 727-735. | |
11 | Huval B, Wang T, Tandon S, et al. An empirical evaluation of deep learning on highway driving[J/OL]. [2015-04-17]. |
12 | Gurghian A, Koduri T, Bailur S V, et al. Deeplanes: end-to-end lane position estimation using deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 38-45. |
13 | He B, Ai R, Yan Y, et al. Accurate and robust lane detection based on dual-view convolutional neutral network[C]∥IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 2016: 1041-1046. |
14 | Pan X, Shi J, Luo P, et al. Spatial as deep: spatial cnn for traffic scene understanding[J/OL]. [2017-12-17]. |
15 | Philion J. FastDraw: Addressing the long tail of lane detection by adapting a sequential prediction network[C]∥Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11574-11583. |
16 | Khan H U, Ali A R, Hassan A, et al. Lane detection using lane boundary marker network with road geometry constraints[C]∥IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, USA, 2020: 1823-1832. |
17 | Qin Z, Wang H, Li X. Ultra fast structure-aware deep lane detection[J/OL]. [2020-08-05]. |
18 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
19 | Dettmers T, Zettlemoyer L. Sparse networks from scratch: faster training without losing performance[J/OL]. [2019-08-23]. |
20 | Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. [2017-01-30]. |
[1] | 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880. |
[2] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[3] | 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888. |
[4] | 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421. |
[5] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
[6] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
[7] | 董绍江,朱朋,裴雪武,李洋,胡小林. 基于子领域自适应的变工况下滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 288-295. |
[8] | 车翔玖,陈赫元. 基于改进YOLOv4的多目标光盘检测算法[J]. 吉林大学学报(工学版), 2022, 52(11): 2662-2668. |
[9] | 王生生,李晨旭,王翔宇,姚志林,刘一申,吴佳倩,杨晴然. 基于改进残差胶囊网络和麻雀搜索的脑瘤图像分类[J]. 吉林大学学报(工学版), 2022, 52(11): 2653-2661. |
[10] | 曹洁,何智栋,余萍,王进花. 数据不平衡分布下轴承故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(11): 2523-2531. |
[11] | 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173. |
[12] | 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837. |
[13] | 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791. |
[14] | 陈雪云,许韬,黄小巧. 基于条件生成对抗网络的医学细胞图像生成检测方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1414-1419. |
[15] | 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369. |
|