吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1355-1363.doi: 10.13229/j.cnki.jdxbgxb.20210912

• 交通运输工程·土木工程 • 上一篇    

基于交通冲突的长纵坡路段追尾风险评估及预测

潘恒彦1(),王永岗1(),李德林1,陈俊先1,宋杰1,杨钰泉2   

  1. 1.长安大学 运输工程学院,西安 710018
    2.东北林业大学 交通学院,哈尔滨 150040
  • 收稿日期:2021-09-13 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 王永岗 E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn
  • 作者简介:潘恒彦(1994-),男,博士研究生.研究方向:交通安全,交通规划.E-mail:HyPan7@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFB1600500)

Evaluating and forecasting rear⁃end collision risk of long longitudinal gradient roadway via traffic conflict

Heng-yan PAN1(),Yong-gang WANG1(),De-lin LI1,Jun-xian CHEN1,Jie SONG1,Yu-quan YANG2   

  1. 1.College of Transportation Engineering,Chang'an University,Xi'an 710018,China
    2.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2021-09-13 Online:2023-05-01 Published:2023-05-25
  • Contact: Yong-gang WANG E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn

摘要:

通过无人机航拍、雷达测速与人工现场调查对山区长纵坡路段的车辆轨迹与交通流数据进行采集。基于交通冲突技术给出长纵坡路段车辆碰撞时间及冲突所引发追尾事故概率的计算方法,基于动能守恒定律给出长纵坡路段追尾事故的碰撞动能损失量,分别用于量化车辆追尾冲突与事故后果的严重性。构建了追尾风险指数,用于评价长纵坡路段的追尾风险程度。分别运用零膨胀负二项回归(ZINB)与有序Logistic回归对追尾冲突频次与追尾风险等级进行预测,并分析交通流特性对其产生的影响。结果得出:零膨胀负二项回归对上坡与下坡方向冲突频次的预测效果较好,R2分别为0.556与0.482;有序Logistic回归对上下坡追尾风险等级的预测效果极佳,R2分别约为0.643与0.632。车速、加速度、交通量与交通流车辆构成对冲突数量与追尾风险程度的影响存在差异。

关键词: 交通工程, 交通冲突技术, 长纵坡路段, 追尾事故风险, 零膨胀负二项回归, 有序Logistic回归

Abstract:

The vehicle trajectory and traffic flow data of the long longitudinal gradient roadway are collected through aerial photography by UAV, radar speed measurement and manual field survey. Based on the traffic conflict technology, the Time to Collision and the probability of rear-end collision caused by the conflict are calculated, and the loss of crash kinetic energy based on the law of conservation of kinetic energy is given for the rear-end collision on the long longitudinal gradient roadway, which are used to quantify the severity of vehicle rear-end conflict and collision consequences. The index of rear-end risk index is constructed to evaluate the degree of rear-end risk on long longitudinal gradient roadway. The zero-inflated negative binomial regression(ZINB) and ordered logistic regression were used to predict the frequency of rear-end conflicts and the risk level of rear-end, and analyze the influence of traffic flow characteristics indicators on them. The results showed that: the frequency of conflicts in uphill and downhill directions were well predicted with R2 of 0.556 and 0.482, respectively; the risk level of rear-end collisions in uphill and downhill directions were well predicted with R2 of 0.643 and 0.632, respectively; the effects of vehicle speed, acceleration, traffic volume and vehicle composition on the number of conflicts and the risk level of rear-end collisions were different.

Key words: traffic engineering, traffic conflict techniques, long longitudinal gradient roadway, rear-end collision risk, zero-inflated negative binomial regression, ordered Logistic regression

中图分类号: 

  • U491

图1

长纵坡路段现状及视频截图"

表1

事故分类及风险指数范围"

事故类型和E取值范围冲突类型及TTC取值范围(下坡/上坡)

无冲突,TTC≥5.2/

0<pr0.003

一般冲突,2.5≤TTC<5.2

0.003<pr0.723

严重冲突,TTC<2.5/

0.723<pr<1

无事故,E=0 J,cr=0000

轻微后果,0<E≤37 500 J,

0<cr0.33

(0,0.1992](0.0012,0.4872](0.2892,0.5980)

一般后果,37 500<E≤75 000 J,

0.33<cr0.67

(0.198,0.4032](0.1992,0.6912](0.4872,0.8020)

较严重后果,75 000 J<E<

112 500J,0.67<cr<1

(0.4020,0.6012](0.4032,0.8892](0.6912,1)
严重后果,E≥112 500 J,cr=1(0.6,0.601](0.601,0.8892](0.8892,1)

表2

ZINB回归参数估计结果"

上坡下坡
指标Coef.Std. Err.zP>zCoef.Std. Err.zP>z
Negative binomial
Q0.750.1544.8600.8480.1425.970
Pro-0.0060.085-0.070.941-0.0030.1-0.030.977
_cons-1.7710.296-5.980-1.4490.289-5.020
Inflate
v.m0.1580.3680.430.6670.2570.6160.420.677
v.s-2.4530.615-3.990-4.3481.31-3.320.001
a.m0.6380.4911.30.194-0.2340.474-0.490.621
a.s-2.2010.734-30.003-4.7671.807-2.640.008
h.m1.5650.4313.6304.5991.4223.230.001
h.s-0.150.41-0.370.715-0.6670.82-0.810.416
_cons5.6721.1055.13014.2794.0493.530
/lnalpha-20.496430.998-0.050.962-24.545499.651-0.050.961
alpha1.26E-095.41E-072.19E-111.09E-08
Log-Lik Full Model-166.301-217.687
McFadden's R20.5840.507
McFadden's Adj R20.5560.482

表3

追尾风险等级与交通流特征指标显著性分析"

指标上坡下坡
Coef.Std. Err.zP>zCoef.Std. Err.zP>z
v.m0.5600.0926.1100.0000.7240.0927.8500.000
v.s0.6430.1046.1700.0000.8230.1186.9900.000
a.m0.7390.0937.9800.000-0.7080.091-7.7800.000
a.s0.7570.0928.2100.0000.6840.0927.4400.000
h.m-0.6180.098-6.3300.000-0.6480.098-6.6100.000
h.s0.0410.0470.8700.386-0.0210.046-0.4600.646
Q0.4070.1004.0700.0000.2710.1072.5200.012
Pro0.6200.0946.5700.0000.4380.0954.6300.000
/cut17.2310.4377.1670.436
/cut213.7420.74513.7630.758
Prob>chi200
Pseudo R20.64300.6315
1 杨宏志, 胡庆谊, 许金良.高速公路长大下坡路段安全设计与评价方法[J].交通运输工程学报, 2010,10(3): 10-16.
Yang Hong-zhi, Hu Qing-yi, Xu Jin-liang. Safety design and evaluation method of long-steep downgrade sections for expressway[J]. Journal of Traffic and Transportation Engineering, 2010, 10(3): 10-16.
2 赵源, 邰永刚.高速公路长大下坡路段驾驶行为分析[J].公路工程, 2014, 39(5): 68-70.
Zhao Yuan, Yi Yong-gang. Driving behavior analysis on long and steep downgrades of expressway[J]. Highway Engineering, 2014, 39(5): 68-70.
3 Ahmed M, Abdel-Aty M. The viability of using automatic vehicle identification data for real-time crash prediction[J].IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 459-468.
4 马壮林, 邵春福, 胡大伟, 等.高速公路交通事故起数时空分析模型[J].交通运输工程学报, 2012, 12(2): 93-99.
Ma Zhuang-lin, Shao Chun-fu, Hu Da-wei, et al. Temporal-spatial analysis model of traffic accident frequency on expressway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 93-99.
5 Thanapong C, Jomnonkwao S, Karoonsoontawong A, et al. Spatial zero-inflated negative binomial regression models: application for estimating frequencies of rear-end crashes on Thai highways[J]. Journal of Transportation Safety and Security, 2020, 14(3): 523-540.
6 Ma Y, Qin X, Grembek O, et al. Developing a safety heatmap of uncontrolled intersections using both conflict probability and severity[J]. Accident Analysis and Prevention, 2018, 113: 303-316.
7 Åse S, Christer H. Estimating the severity of safety related behaviour[J]. Accident Analysis and Prevention, 2005, 38(2): 379-385.
8 Aliaksei L, Åse S, Christer H. Evaluation of traffic safety, based on micro-level behavioural data:theoretical framework and first implementation[J]. Accident Analysis and Prevention, 2010, 42(6): 1637-1646.
9 徐汉清. 高速公路典型区段交通冲突及安全性评价研究[D]. 哈尔滨: 哈尔滨工业大学, 交通科学与工程学院, 2013.
Xu Han-qing. Research on traffic conflict and safety evaluation in typical sections of expressway[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2013.
10 朱顺应, 蒋若曦, 王红, 等.机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33.
Zhu Shun-ying, Jiang Ruo-xi, Wang Hong, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33.
11 Nicolas S, Tarek S. Probabilistic framework for automated analysis of exposure to road collisions[J]. Transportation Research Record, 2008, 2083(1): 96-104.
12 Qu X, Yan K, Erwin O, et al. Safety evaluation for expressways: a comparative study for macroscopic and microscopic indicators[J]. Traffic Injury Prevention, 2014, 15(1): 89-93.
13 马艳丽, 祁首铭, 吴昊天, 等.基于PET算法的匝道合流区交通冲突识别模型[J].交通运输系统工程与信息, 2018, 18(2): 142-148.
Ma Yan-li, Qi Shou-ming, Wu Hao-tian, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J].Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 142-148.
14 Gu X, Abdel-Aty M, Xiang Q, et al. Utilizing UAV video data for in-depth analysis of drivers' crash risk at interchange merging areas[J]. Accident Analysis and Prevention, 2019, 123: 159-169.
15 Jarvis A, Tarek S, Mohamed H. Safety evaluation of right-turn smart channels using automated traffic conflict analysis[J]. Accident Analysis and Prevention, 2012, 45: 120-130.
16 Aliaksei L, Tim D, Christoffer K, et al. In search of the severity dimension of traffic events: extended delta-V as a traffic conflict indicator[J]. Accident Analysis and Prevention, 2017, 98: 46-56.
17 蒋若曦, 朱顺应, 王磊, 等.基于交通冲突的高速公路施工区安全评价[J].中国安全科学学报, 2019, 29(6): 116-121.
Jiang Ruo-xi, Zhu Shun-ying, Wang Lei, et al. Traffic safety assessment of highway work-zone based on traffic conflict[J]. China Safety Science Journal, 2019, 29(6): 116-121.
18 Zheng L, Ismail K, Meng X. Traffic conflict techniques for road safety analysis: open questions and some insights[J]. 2014, 41(7): 633-641.
19 Omar B. Estimation of the severity of safety critical events[J]. Accident Analysis and Prevention, 2013, 50: 167-174.
20 温惠英, 吴嘉彬, 漆巍巍, 等.高速公路入口匝道合流区的CP-CS融合模型[J].华南理工大学学报: 自然科学版, 2020, 48(2): 50-57.
Wen Hui-ying, Wu Jia-bin, Qi Wei-wei, et al.CP-CS fusion model for on-ramp merging area on the highway[J].Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 50-57.
21 Kraus J, Anderson C, Arzemanian S, et al. Epidemiological aspects of fatal and severe injury urban freeway crashes[J].Accident Analysis and Prevention, 1993, 25(3): 229-239.
22 朱顺应, 邹禾, 蒋若曦, 等.高速公路施工区合流路段交通冲突模型[J].哈尔滨工业大学学报, 2020, 52(9): 70-76.
Zhu Shun-ying, Zou He, Jiang Ruo-xi, et al. Traffic conflict model for confluence section in highway construction area[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 70-76.
23 Ahmed M, Huang H, Abdel-Aty M, et al. Exploring a bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J].Accident Analysis & Prevention, 2011, 43(4): 1581-1589.
24 Yu R, Abdel-Aty M, Ahmed M. Bayesian random effect models incorporating real-time weather and traffic data to investigate mountainous freeway hazardous factors[J]. Accident Analysis and Prevention, 2013, 50: 371-376.
25 Christopher M, Edward L. Safety effects of reducing freeway illumination for energy conservation[J].Accident Analysis and Prevention,2008,40(5):1773-1780.
26 Adeleh K, Davoodi S. A generalized ordered probit model for analyzing driver injury severity of head-on crashes on two-lane rural highways in Malaysia[J]. Journal of transportation safety & security, 2020, 12(8): 1067-1082.
27 Shaw-Pin M, Roger P, Dominique L. Developing guidelines for median barrier installation: benefit-cost analysis with texas data[J]. Transportation Research Record, 2005(1904): 2-19.
28 Jutaek O, Simon P W, Doohee N. Accident prediction model for railway-highway interfaces[J]. Accident Analysis and Prevention, 2005, 38(2): 346-356.
29 Lai Z, Hou Q, Meng X. Comparison of modelling methods accounting for temporal correlation in crash counts[J]. Journal of Transportation Safety & Security, 2020, 12(2): 245-262.
30 Alidad A, Jahangiri A, Berardi V, et al. Crash severity analysis of rear-end crashes in California using statistical and machine learning classification methods[J]. Journal of Transportation Safety & Security, 2020, 12(4): 522-546.
31 郭梦竹, 李世武.基于驾驶员反应时间的驾驶疲劳量化[J].吉林大学学报: 工学版, 2020, 50(3): 951-955.
Guo Meng-zhu, Li Shi-wu. Driving fatigue quantification based on driver's reaction time[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 951-955.
32 袁守利, 郭铮.考虑驾驶员反应时间的车辆碰撞预警模型[J].安全与环境学报, 2021, 21(1): 270-276.
Yuan Shou-li, Guo Zheng. A warning model for vehicle collision on account of the reaction time of the driver[J]. Journal of Safety and Environment, 2021, 21(1): 270-276.
33 项乔君, 陆键, 卢川, 等.道路交通冲突分析技术及应用[M].北京: 科学出版社, 2008.
34 Jarvis A, Tarek S, Mohamed H Z. Safety evaluation of right-turn smart channels using automated traffic conflict analysis[J]. Accident Analysis and Prevention, 2012, 45: 120-130.
35 Alhajyaseen W. The integration of conflict probability and severity for the safety assessment of intersections[J]. Arabian Journal for Science and Engineering, 2015, 40(2): 421-430.
[1] 宋灿灿,荆迪菲,谢俊峰,康可心. 设置广告牌的高速公路平曲线路段驾驶行为分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1345-1354.
[2] 卢凯,徐广辉,叶志宏,林永杰. 考虑清空时间的双向队首绿波协调控制数解算法[J]. 吉林大学学报(工学版), 2023, 53(2): 421-429.
[3] 张鑫,张卫华. 快速路合流区主线不同交通状态下的安全性分析[J]. 吉林大学学报(工学版), 2022, 52(6): 1308-1314.
[4] 曲大义,赵梓旭,贾彦峰,王韬,刘琼辉. 基于Lennard-Jones势的车辆跟驰动力学特性及模型[J]. 吉林大学学报(工学版), 2022, 52(11): 2549-2557.
[5] 董春娇,董黛悦,诸葛承祥,甄理. 电动自行车出行特性及骑行决策行为建模[J]. 吉林大学学报(工学版), 2022, 52(11): 2618-2625.
[6] 曲大义,黑凯先,郭海兵,贾彦峰,王韬. 车联网环境下车辆换道博弈行为及模型[J]. 吉林大学学报(工学版), 2022, 52(1): 101-109.
[7] 张文会,伊静,刘委,于秋影,王连震. 基于MADYMO的大客车追尾碰撞事故乘员损伤机理[J]. 吉林大学学报(工学版), 2022, 52(1): 118-126.
[8] 刘志伟,刘建荣,邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报(工学版), 2021, 51(4): 1261-1268.
[9] 徐进,潘存书,符经厚,刘俊,王郸祁. 典型道路场景以及场景切换时的速度行为特性[J]. 吉林大学学报(工学版), 2021, 51(4): 1331-1341.
[10] 查伟雄,蔡其燕,李剑,严利鑫. 边路车辆出入条件下城市干线信号协调相位差优化[J]. 吉林大学学报(工学版), 2021, 51(2): 565-574.
[11] 李世武, 徐艺, 孙文财, 王琳虹, 郭梦竹, 柴萌. 基于瞳孔直径的撞固定物冲突自反馈识别方法[J]. 吉林大学学报(工学版), 2016, 46(2): 418-425.
[12] 孙轶轩, 邵春福, 岳昊, 朱亮. 基于SVM灵敏度的城市交通事故严重程度影响因素分析[J]. 吉林大学学报(工学版), 2014, 44(5): 1315-1320.
[13] 董宏辉,孙晓亮,贾利民,秦勇. 多模态的交通流量预测模型[J]. 吉林大学学报(工学版), 2011, 41(03): 645-649.
[14] 姜桂艳,吴超腾. 基于GPS采集车辆行程时间的路段划分模型[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 177-0181.
[15] 吕能超,严新平,RanBin,徐堃. 基于道路出行者行为的大型活动停车模型[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 135-0139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!