吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 1943-1950.doi: 10.13229/j.cnki.jdxbgxb.20211021

• 材料科学与工程 • 上一篇    

高温水浸对T800/环氧树脂基复合材料性能的影响

许良(),边钰博,周松(),肖景厚   

  1. 沈阳航空航天大学 机电工程学院,沈阳 110136
  • 收稿日期:2021-10-07 出版日期:2023-07-01 发布日期:2023-07-20
  • 通讯作者: 周松 E-mail:sysyxu@163.com;zhousong23@163.com
  • 作者简介:许良(1965-),男,教授.研究方向:复合材料和金属材料性能.E-mail: sysyxu@163.com
  • 基金资助:
    国家自然科学基金项目(51775355)

Effect of high temperature immersion on properties of T800 carbon fiber/epoxy resin composites

Liang XU(),Yu-bo BIAN,Song ZHOU(),Jing-hou XIAO   

  1. College of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China
  • Received:2021-10-07 Online:2023-07-01 Published:2023-07-20
  • Contact: Song ZHOU E-mail:sysyxu@163.com;zhousong23@163.com

摘要:

分析了不同温度水浸环境下T800碳纤维/环氧树脂基复合材料的吸湿特性及性能。首先对其进行水浸吸湿试验,再分析其质量变化、吸湿率变化、红外光谱、水浸前后的表面形貌、玻璃化转变温度、压缩强度及层间剪切强度。结果表明,水浸环境温度越高,吸湿速率越快,玻璃化转变温度Tg下降程度越大;经水浸后,试样表面产生裂纹,纤维与树脂基体界面发生破坏,试样的层间剪切强度与压缩强度下降明显。

关键词: T800/环氧树脂基复合材料, 水浸环境, 吸湿率, 力学性能

Abstract:

The hygroscopic properties and properties of T800 carbon fiber/epoxy matrix composites were analyzed under water immersion conditions at different temperatures. The mass variation, moisture absorption rate variation, IR spectrum, surface morphology before and after water immersion, glass transition temperature, compressive strength and interlayer shear strength were analyzed. The results show that the temperature is higher, the rate of moisture absorption is faster, and the degree of Tg(glass transition temperature) reduction is larger. Cracks occur on the specimen surface and the interface between the fiber and the resin matrix is damaged. After water immersion, the inter-laminar shear strength and compressive strength of the sample are significantly reduced.

Key words: T800 carbon fiber-epoxy composite, immersion environment, moisture absorption rate, mechanical property

中图分类号: 

  • TB332

图1

质量变化曲线"

图2

不同温度浸泡溶液下SEM"

图3

水浸前、后红外光谱图"

图4

不同环境下的DMA曲线"

图5

层间剪切试验前、后试件状态"

表1

不同温度溶液浸泡对T800碳纤维复合材料层间剪切性能的影响"

剪切性能未水浸

70 ℃

蒸馏水

90 ℃

蒸馏水

70 ℃

3.5%NaCl溶液

90 ℃

3.5%NaCl溶液

最大破坏载荷/N48564453442244104322
剪切强度/MPa84.49071.48670.93870.60669.187

表2

不同温度溶液浸泡对T800碳纤维复合材料层间剪切破坏载荷及模式"

试验编号破坏载荷/N破坏模式
未水浸70 ℃蒸馏水90 ℃蒸馏水70 ℃ 3.5%NaCl溶液90 ℃ 3.5%NaCl溶液
149324398451143534426层间剪切
247664456436545874210层间剪切
347114587438144314298层间剪切
448834501436643274356层间剪切
549884323448743524320层间剪切

图6

层间剪切强度试验误差分布"

图7

压缩试验前后试件状态"

表3

不同温度溶液浸泡对T800碳纤维复合材料压缩强度的影响"

性能未水浸

70 ℃

蒸馏水

90 ℃

蒸馏水

70 ℃

3.5%NaCl溶液

90 ℃

3.5%NaCl溶液

最大破坏载荷/N33 01232 05932 25431 77832 475
压缩强度 /MPa602.12578.49579.62575.37580.42

表4

不同温度溶液浸泡对T800碳纤维复合材料压缩破坏载荷及模式"

试验编号破坏载荷/N破坏模式
未水浸70 ℃蒸馏水90 ℃蒸馏水70 ℃ 3.5%NaCl溶液90 ℃ 3.5%NaCl溶液
133 54032 68631 65131 60432 620BGM
233 41331 49532 37431 22831 836BGM
332 99432 21132 44032 33333 067BGM
432 88431 82731 98732 00132 396BGM
532 22932 07632 81931 72532 452BGM

图8

压缩强度试验误差分布"

1 吕小军,张琦,马兆庆,等.湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005(11): 50-53.
Xiao-jun Lü, Zhang Qi, Ma Zhao-qing, et al. Effect of hygrothermal aging on mechanical properties of carbon fiber/epoxy resin matrix composites[J]. Materials Engineering, 2005(11): 50-53.
2 Venkatesha B K, Saravanan R, Babu K A. Effect of moisture absorption on woven bamboo/glass fiber reinforced epoxy hybrid composites[J]. Materials Today: Proceedings, 2021(45): 216-221.
3 王国建,孙耀宁,姜宏,等. 湿热-高温循环老化对环氧乙烯基酯树脂/玻璃纤维复合材料性能影响[J]. 工程塑料应用, 2020, 48(9): 121-126.
Wang Guo-jian, Sun Yao-ning, Jiang Hong, et al. Influences of cyclic hygrothermal-thermal aging on properties of epoxy vinylester resin/glass fiber composites[J]. Engineering Plastics Application, 2020, 48(9): 121-126.
4 Li H L, Zhang K F, Fan X T, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B, 2019, 173: No. 106910.
5 余海燕,吴航宇,石慧茹. 湿热环境中碳纤维复合材料层合板的强度退化及老化寿命预测[J]. 机械工程材料, 2021, 45(4): 40-45.
Yu Hai-yan, Wu Hang-yu, Shi Hui-ru. Strength degradation and aging life prediction of carbon fiber composite laminates in hot and humid environment[J]. Materials for Mechanical Engineering, 2021, 45(4): 40-45.
6 王汝敏. 聚合物基复合材料及工艺[M]. 北京: 科学技术出版社, 2004.
7 John F M, Sandra R. Water absorption dimensional change and radial pressure in resin matrix dental restorative materials [J]. Biomaterials, 2004, 25: 4001-4007.
8 包建文,陈祥宝. 5284/T300复合材料湿热性能研究[J]. 宇航材料工艺, 2000(4): 39-42.
Bao Jian-wen, Chen Xiang-bao. Study on the moisture and thermal properties of 5284/T300 composites[J]. Aerosp Mater Technol, 2000(4): 39-42.
9 栗晓飞,张琦,谢国君,等. 影响碳纤维增强树脂基复合材料腐蚀重要环境因素的研究[J]. 装备环境工程, 2005, 2(6): 34-40.
Li Xiao-fei, Zhang Qi, Xie Guo-jun, et al. Study on important environmental factors affecting corrosion of carbon fiber reinforced resin matrix composites[J]. Equipment Environmental Engineering, 2005, 2(6): 34-40.
10 Wolff E G. Polymer Matrix Composites: Moisture Effects and Dimensional Stability, International Encyclopedia of Composites[M]. New York: VCH Publishers, 1991.
11 Xu Z R, Ashbee K. Photo-elastic study of the durability of interfacial bonding of carbon fiber epoxy resin composites[J]. Journal of Materials Science, 1994, 29(2): 394-403.
12 Xu L, He Y, Ma S H, et al. Effects of hygrothermaland thermal-oxidative ageing on the open-hole properties of T800/high-temperature epoxy resin composites with different hole shapes[J]. High Perform Polym, 2019, 32(5): 494-505.
13 周松,贾耀雄,许良,等. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 46(10): 138-143.
Zhou Song, Jia Yao-xiong, Xu Liang, et al. Effect of hygrothermal environmenton mechanical properties of T800 carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2021, 46(10): 138-143.
14 李玉玲,万里强,黄发荣,等. 碳纤维/聚三唑树脂复合材料的湿热老化行为[J]. 玻璃钢/复合材料, 2014(11): 36-41.
Li Yu-ling, Wan Li-qiang, Huang Fa-rong, et al. Wet-heat aging behavior of carbon fiber/polytriazole resin composites[J]. Fiber-glass reinforced Plastics/composites, 2014(11):36-41.
15 Ma S H, He Y, Hui L, et al. Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites[J]. Adv Compos Mater, 2019, 29(9): 1-18.
16 王莉莉,杨小平,于运花,等. 湿热环境对抽油杆CF/VE拉挤复合材料的影响[J]. 复合材料学报, 2004, 21(3): 131-136.
Wang Li-li, Yang Xiao-ping, Yu Yun-hua, et al. Effect of hot and humid environment on sucker rod CF/VE pultrusion composites[J]. Acta Materiae Compositae Sinica, 2004, 21(3): 131-136.
17 高建业,洪彬,高振东,等. 碳纤维增强用环氧树脂的湿热老化规律研究[J]. 热固性树脂, 2018, 33(5): 56-59.
Gao Jian-ye, Hong Bin, Gao Zhen-dong, et al. Study on damp heat aging law of epoxy resin for carbon fiber reinforcement[J]. Thermosetting Resin, 2018, 33(5): 56-59.
18 高坤,史汉桥,孙宝岗,等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016(6): 1147-1152.
Gao Kun, Shi Han-qiao, Sun Bao-gang, et al. Effect of hygrothermal aging on properties of glass fiber/epoxy resin composites[J]. Acta Composite Materials, 2016(6): 1147-1152.
19 马少华,王勇刚,回丽,等. 湿热环境下复合材料孔板压缩性能的研究[J]. 宇航材料工艺, 2015, 45(6): 66-70.
Ma Shao-hua, Wang Yong-gang, Hui Li, et al. Study on compression properties of composite orifice plates under hot and humid environment[J]. Aerospace Materials Technology, 2015, 45(6): 66-70.
20 余治国,杨胜春,宋笔锋. T700和T300碳纤维增强环氧树脂基复合材料耐湿热老化性能的对比[J]. 机械工程材料, 2009(6): 48-51.
Yu Zhi-guo, Yang Sheng-chun, Song Bi-feng. Comparison of hygrothermal aging resistance of T700 and T300 carbon fiber reinforced epoxy resin matrix composites[J]. Mechanical Engineering Materials, 2009(6): 48-51.
[1] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[2] 魏海斌,王相焱,王富玉,张勇. 基于振动成型AC-25沥青混合料力学性能及细观分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1269-1276.
[3] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[4] 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945.
[5] 王金国,王志强,任帅,闫瑞芳,黄恺,郭劲. Ti添加量对球墨铸铁组织及力学性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1653-1662.
[6] 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652.
[7] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[8] 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525.
[9] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[10] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[11] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[12] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[13] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[14] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[15] 邓成江,何晓聪,邢保英,王玉奇,曾凯,丁燕芳. 铝与铜异质板材自冲铆搭接接头的力学性能[J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!