吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3255-3264.doi: 10.13229/j.cnki.jdxbgxb.20230018
• 交通运输工程·土木工程 • 上一篇
Lin LI(
),Ke-ren SHEN,Shi-yu HE,Zhen-wang CHEN
摘要:
提出了一种基于3D-DIC技术和摄影测量原理的方法来实时测量无侧限试样的体积与全局变形,该方法采用试样表面纹理和一个由六台单反相机组成的照片拍摄系统,通过3D-DIC技术分析照片以生成二维点云,利用自编软件GeoTri3D结合摄影测量原理获取二维点云中所有点的三维位置,再对三维点云进行缝合、三角网格划分和端部截断来重建试样的全表面,并计算其体积、全局及局部变形场。基于提出的测量方法开展了一个标准钢柱、砂土和粉土试样的无侧限试验。钢柱试验表明,本文所提出的方法用于无侧限试样体积测量时的误差为0.40%;砂土和粉土试样的无侧限试验结果表明,该方法既可测量总体体积,也可实现任意时刻的全局变形测量;此外,对于试样表面任何兴趣区域,还可通过进一步加大点云密度来获取精细的局部三维变形信息。本文提出的测量方法兼顾了总体体积、全局变形与局部精细变形,弥补了传统方法精度与分辨率低、测量范围小,以及结果单一的缺陷。
中图分类号:
| 1 | 汤连生, 张鹏程, 刘增贤, 等. 土体饱和度确定的两个问题[J]. 水文地质工程地质, 2002, 29(5): 1-3. |
| Tang Lian-sheng, Zhang Peng-cheng, Liu Zeng-xian, et al. Discussion on degree of saturation determination of soils[J]. Hydrogeology Engineering Geology, 2002, 29(5): 1-3. | |
| 2 | Alshibli K A, Sture S, Costes N C, et al. Assessment of localized deformation in sand using X-ray computed tomography[J]. Geotechnical Testing Journal, 23(3): 274-299. |
| 3 | Desrues J, Viggiani G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereo-photogrammetry[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4): 279-321. |
| 4 | Rechenmacher A L. Grain-scale processes governing shear band initiation and evolution in sands[J]. Journal of the Mechanics and Physics of Solids, 54(1): 22-45. |
| 5 | Macari E, Parker J, Costes N. Measurement of volume changes in triaxial tests using digital imaging techniques[J]. Geotechnical Testing Journal, 1997, 20(1): 103-109. |
| 6 | Lin H, Penumadu D. Strain localization in combined axial torsional testing on Kaolin clay[J]. Journal of Engineering Mechanics, 2006, 132(5): 555-564. |
| 7 | Gachet P, Geiser F, Laloui L, et al. Automated digital image processing for volume change measurement in triaxial cells[J]. Geotechnical Testing Journal, 2007, 30(2): 98-103. |
| 8 | Uchaipichat A, Khalili N, Zargarbashi S, et al. A temperature controlled triaxial apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 2011, 34(5): 424-432. |
| 9 | Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physical E, 1981, 14: 1270-1273. |
| 10 | Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1983, 21(3): 427-431. |
| 11 | Luo P, Chao Y J, Sutton M, et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics, 1993, 33(2): 123-132. |
| 12 | Bhandari A R, Powrie W, Harkness R M. A digital image-based deformation measurement system for triaxial tests[J]. Geotechnical Testing Journal, 2012, 35(2): 209-226. |
| 13 | Orteu J J, Bugarin F, Harvent J, et al. Multiple-camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: methodology and results[J]. Experimental Mechanics, 2011, 51(4): 625-639. |
| 14 | Malowany K, Malesa M, Kowaluk T, et al. Multi-camera digital image correlation method with distributed fields of view[J]. Optics and Lasers in Engineering, 2017, 98: 198-204. |
| 15 | Wang Y, Lava P, Coppieters S, et al. Application of a multi-camera stereo DIC set-up to assess strain fields in an erichsen test: methodology and validation[J]. Strain, 2013, 49(2): 190-198. |
| 16 | Salazar S E, Coffman R A. Consideration of internal board camera optics for triaxial testing applications[J]. Geotechnical Testing Journal, 2015, 38(1): No.20140163. |
| 17 | Salazar S E, Barnes A, Coffman R A. Development of an internal camera-based volume determination system for triaxial testing[J]. Geotechnical Testing Journal, 2015, 38(4): No.20140249. |
| 18 | Zhang X, Li L, Chen G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2015, 10(1): 55-82. |
| 19 | Li L, Zhang X, Chen G, et al. Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method[J]. Canadian Geotechnical Journal, 2016, 53(3): 472-489. |
| 20 | Li L, Zhang X. A new triaxial testing system for unsaturated soil characterization[J]. Geotechnical Testing Journal, 2015, 38(6): 823-839. |
| 21 | Li L, Zhang X. Factors influencing the accuracy of the photogrammetry-based deformation measurement method[J]. Acta Geotechnica, 2019, 14(2): 559-574. |
| 22 | Li L, Li P, Lu Y, et al. Visualization of non-uniform soil deformation during triaxial testing[J]. Acta Geotechnica, 2021, 16(4): 3439-3454. |
| 23 | 蔡阳, 李林, 路毅. 三轴试样绝对体积测量方法研究[J].岩土工程学报, 2021, 43(12): 2300-2307. |
| Cai Yang, Li Lin, Lu Yi. Study on absolute volume measurement method of triaxial specimen[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2300-2307. | |
| 24 | 范杰, 朱星, 胡桔维, 等. 3D-DIC技术在砂岩裂纹扩展及损伤监测中的试验研究[J].岩土力学, 2022, 43(4): 1009-1019. |
| Fan Jie, Zhu Xing, Hu Ju-wei, et al. Experimental study on 3D-DIC technology in sandstone crack propagation and damage monitoring[J]. Rock and Soil Mechanics, 2022, 43(4): 1009-1019. | |
| 25 | 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究[J]. 采矿与安全工程学报, 2021, 38(5): 1025-1035. |
| Li Di-yuan, Wan Qian-rong, Zhu Quan-qi, et al. Experimental study on mechanical properties and failure law of rock with prefabricated cracks under different loading modes[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 1025-1035. | |
| 26 | Tang Y, Okubo S, Xu J, et al. Study on the progressive failure characteristics of coal in uniaxial and triaxial compression conditions using 3D-digital image correlation[J]. Energies, 2018, 11(5): en11051215. |
| 27 | Cheng J L, Yang S Q, Chen K, et al. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation(DIC)[J]. Acta Mechanica Sinica, 2017, 33(6): 999-1021. |
| 28 | Fayek S, Xia X, Li L, et al. A photogrammetry-based approach to determine the absolute volume of soil specimen during triaxial testing[J]. Journal of the Transportation Research Board, 2020, 2674(8): 206-218. |
| [1] | 李丽华,李孜健,肖衡林,曹文哲,周鑫隆,黄少平. 土工格栅加筋建筑垃圾土循环剪切试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1612-1623. |
| [2] | 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611. |
| [3] | 宫亚峰,刘佰鑫,杨建星,何锋,孙亮,田立华. 基于深基坑施工的概率有限元基准模型参数修正[J]. 吉林大学学报(工学版), 2024, 54(12): 3534-3544. |
| [4] | 李丽华,康浩然,张鑫,肖衡林,刘一鸣,周鑫隆. 加筋土石混合体动力特性[J]. 吉林大学学报(工学版), 2024, 54(10): 2897-2907. |
| [5] | 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553. |
| [6] | 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331. |
| [7] | 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098. |
| [8] | 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832. |
| [9] | 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169. |
| [10] | 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855. |
| [11] | 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882. |
| [12] | 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637. |
| [13] | 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640. |
| [14] | 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164. |
| [15] | 李军军,曹建农,程贝贝,廖娟,朱莹莹. 联合像素与多尺度对象的高分辨率遥感影像谱聚类分割[J]. 吉林大学学报(工学版), 2019, 49(6): 2098-2108. |
|
||