吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3244-3254.doi: 10.13229/j.cnki.jdxbgxb.20230073
• 交通运输工程·土木工程 • 上一篇
李松1,2(
),石星星1,3,司春棣1,2,蒋继望4,暴斌硕5
Song LI1,2(
),Xing-xing SHI1,3,Chun-di SI1,2,Ji-wang JIANG4,Bin-shuo BAO5
摘要:
为定量表征矿粉对沥青胶浆的性能影响,采用改进的多应力蠕变恢复(MSCR)试验,评价沥青胶浆的高温流变性能,基于沥青胶浆的不可恢复柔量Jnr指标提出矿粉强化效应指标ΔJnr,并诠释矿粉强化规律。结果表明:矿粉强化效应与沥青种类有关,其中SBS改性沥青胶浆矿粉强化作用呈两阶段趋势,即先随矿粉掺量的增加而线性增强,随后不再受矿粉掺量的影响。两阶段临界值可作为沥青胶浆的推荐矿粉掺量,计算得到3.5%和4.0% SBS改性剂掺量的改性沥青胶浆的推荐矿粉掺量分别为120%和100%。构建了矿粉强化效应的多元线性回归模型,进一步阐明了应力等级、改性剂掺量和矿粉掺量对矿粉强化效应的影响。
中图分类号:
| 1 | You T, Kim Y R, Rami K Z, et al. Multiscale modeling of asphaltic pavements: comparison with field performance and parametric analysis of design variables[J]. Journal of Transportation Engineering, Part B: Pavements, 2018, 144(2): No.04018012. |
| 2 | 董伟智, 张爽, 朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报: 工学版, 2021, 51(6): 2137-2143. |
| Dong Wei-zhi, Zhang Shuang, Zhu Fu. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2137-2143. | |
| 3 | Guo M, Bhasin A, Tan Y. Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder[J]. Construction and Building Materials, 2017, 141: 152-159. |
| 4 | Underwood B S, Kim Y R. Nonlinear viscoelastic analysis of asphalt cement and asphalt mastics[J]. International Journal of Pavement Engineering, 2014, 16(6): 510-529. |
| 5 | 李震南, 申爱琴, 郭寅川, 等. 玄武岩纤维沥青胶浆及混合料的低温性能关联性[J]. 建筑材料学报, 2021, 24(1): 146-152. |
| Li Zhen-nan, Shen Ai-qin, Guo Yin-chuan, et al. Low temperature performance correlation of basalt fiber asphalt mortar and mixture[J]. Journal of Building Materials, 2021, 24(1): 146-152. | |
| 6 | Diab A, You Z. Linear and nonlinear rheological properties of bituminous mastics under large amplitude oscillatory shear testing[J]. Journal of Materials in Civil Engineering, 2018, 30(3): No.04017303. |
| 7 | 李松. 沥青混合料高温蠕变性能的多尺度研究[D]. 南京: 东南大学交通学院, 2020. |
| Li Song. Multi-scale study on creep property of asphalt mixture at high temperature[D]. Nanjing: School of Transportation,Southeast University, 2020. | |
| 8 | 詹小丽, 张肖宁, 王端宜, 等. 基于DMA方法的沥青胶浆微观结构[J]. 吉林大学学报: 工学版, 2009, 39(4): 916-920. |
| Zhan Xiao-li, Zhang Xiao-ning, Wang Duan-yi, et al. Microstructure of asphalt mastic using dynamic mechanical analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 916-920. | |
| 9 | Cheng Y, Tao J, Jiao Y, et al. Influence of the properties of filler on high and medium temperature performances of asphalt mastic[J]. Construction and Building Materials, 2016, 118: 268-275. |
| 10 | Zhang J, Liu G, Hu Z, et al. Effects of temperature and loading frequency on asphalt and filler interaction ability[J]. Construction and Building Materials, 2016, 124: 1028-1037. |
| 11 | 付军, 熊定邦, 李忠杰, 等. 沥青混合料界面区微米划痕试验与参数分析[J]. 建筑材料学报, 2023, 26(1): 78-84. |
| Fu Jun, Xiong Ding-bang, Li Zhong-jie, et al. Micro- scratch test and parameter analysis of asphalt mixture interfacial transition zone[J]. Journal of Building Materials, 2023, 26(1): 78-84. | |
| 12 | 熊锐, 乔宁, 褚辞, 等. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报: 工学版, 2020, 50(1): 183-190. |
| Xiong Rui, Qiao Ning, Chu Ci, et al. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortar[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 183-190. | |
| 13 | Underwood B S, Kim Y R. Microstructural investigation of asphalt concrete for performing multiscale experimental studies[J]. International Journal of Pavement Engineering, 2013, 14(5): 498-516. |
| 14 | Wang H, Liu X, Apostolidis P, et al. Investigating the high-temperature and low-temperature performance of warm crumb rubber–modified bituminous binders using rheological tests[J]. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(4): No.04021067. |
| 15 | Vignali V, Mazzotta F, Sangiorgi C, et al. Rheological and 3D DEM characterization of potential rutting of cold bituminous mastics[J]. Construction and Building Materials, 2014, 73: 339-349. |
| 16 | Li Q, Li G, Ma X, et al. Linear viscoelastic properties of warm-mix recycled asphalt binder, mastic, and fine aggregate matrix under different aging levels[J]. Construction and Building Materials, 2018, 192: 99-109. |
| 17 | 王志臣, 孙雅珍, 桑海军, 等. 沥青与矿粉的交互作用评价及影响机理分析[J]. 沈阳建筑大学学报: 自然科学版, 2023, 39(2): 339-347. |
| Wang Zhi-chen, Sun Ya-zhen, Sang Hai-jun, et al. Evaluation of the interaction between asphalt and mineral powder and analysis of the influence mechanism[J]. Journal of Shenyang University of Architecture (Natural Science Edition), 2023, 39(2): 339-347. | |
| 18 | Domingos M D I, Faxina A L. Susceptibility of asphalt binders to rutting: literature review[J]. Journal of Materials in Civil Engineering, 2016, 28(2): No.04015134. |
| 19 | Do N D, Liao M C, Mamuye Y, et al. Characteristics of alkali-activated slag filler and its effects on rheology of asphalt mastic[J]. Journal of Materials in Civil Engineering, 2023, 35(4): No.04023003. |
| 20 | Li S, Ni F, Dong Q, et al. Effect of filler in asphalt mastic on rheological behaviour and susceptibility to rutting[J]. International Journal of Pavement Engineering, 2021, 22(1): 87-96. |
| 21 | Tan Y, Li Z, Zhang X, et al. Research on high- and low-temperature properties of asphalt-mineral filler mastic[J]. Journal of Materials in Civil Engineering, 2010, 22(8): 811-819. |
| 22 | Tabatabaee N, Tabatabaee H A. Multiple stress creep and recovery and time sweep fatigue tests: crumb rubber modified binder and mixture performance[J]. Transportation Research Record, 2010, 2180(1): 67-74. |
| 23 | 郭咏梅, 许丽, 吴亮, 等. 基于MSCR试验的改性沥青高温性能评价[J]. 建筑材料学报, 2018, 21(1): 154-158. |
| Guo Yong-mei, Xu Li, Wu Liang, et al. High temperature performance evaluation of modified asphalt based on multipe stress creep recover test[J]. Journal of Building Materials, 2018, 21(1): 154-158. | |
| 24 | 罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6): 165-171. |
| Luo Rong, Xu Yuan, Liu Han-qi, et al. Rheological mechanical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport, 2018, 31(6): 165-171. | |
| 25 | Angelo J A. The relationship of the MSCR test to rutting[J]. Road Materials and Pavement Design, 2011, 10(s1): 61-80. |
| 26 | Domingos M, Faxina A L. Literature review of the multiple stress creep and recovery, performance-related test[J]. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(1): No.03121001. |
| 27 | Liao M C, Airey G, Chen J S. Mechanical properties of filler-asphalt mastics[J]. International Journal of Pavement Research and Technology, 2013, 6(5): 576-581. |
| 28 | 郑传峰, 冯玉鹏, 郭学东, 等. 粉胶比对沥青胶浆低温黏结强度的影响[J]. 吉林大学学报: 工学版, 2016, 46(2): 426-431. |
| Zheng Chuan-feng, Feng Yu-peng, Guo Xue-dong, et al. Effect of filler-to-bitumen ratio on low-temperature cohesive strength of asphalt mortar[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 426-431. | |
| 29 | 张亚刚, 林梅, 薛瑛, 等. 基于灰熵关联的沥青胶浆高低温性能研究[J]. 公路, 2023, 68(1): 345-348. |
| Zhang Ya-gang, Lin Mei, Xue Ying, et al. Research on high and low temperature performance of asphalt mastic based on ash-entropy correlation[J]. Highways, 2023, 68(1): 345-348. | |
| 30 | Chen M, Javilla B, Hong W, et al. Rheological and interaction analysis of asphalt binder, mastic and mortar[J]. Materials, 2019, 12(1): 128-150. |
| 31 | Cardone F, Frigio F, Ferrotti G, et al. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics[J]. Journal of Traffic and Transportation Engineering, 2015, 2(6): 373-381. |
| 32 | 王志臣, 郭乃胜, 赵颖华, 等. 基于细观力学的沥青胶浆动态剪切模量预测[J]. 吉林大学学报: 工学版, 2017, 47(2): 459-467. |
| Wang Zhi-chen, Guo Nai-sheng, Zhao Ying-hua, et al. Dynamic shear modulus prediction of asphalt mastic based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 459-467. | |
| 33 | Anderson D, Bahia H, Dongre R. Rheological Properties of Mineral Filler-asphalt Mastics and its Importance to Pavement Performance[M]. West Conhawken: ASTM International, 1992. |
| 34 | Qiu H, Tan X, Shi S, et al. Influence of filler-bitumen ratio on performance of modified asphalt mortar by additive[J]. Journal of Modern Transportation, 2013, 21(1): 40-46. |
| 35 | Underwood B S, Kim Y R. Experimental investigation into the multiscale behaviour of asphalt concrete[J]. International Journal of Pavement Engineering, 2011, 12(4): 357-370. |
| 36 | Wang H, Alqadi I, Faheem A, et al. Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2: 33-39. |
| 37 | Hajikarimi P, Fakhari T F, Moghadas N F, et al. Mechanical behavior of polymer-modified bituminous mastics: experimental approach[J]. Journal of Materials in Civil Engineering, 2018, 31(1): No.04018337. |
| 38 | 交通部公路科学研究院. 公路工程沥青及沥青混合料试验规程[M]. 北京: 人民交通出版社, 2011. |
| 39 | Zeng M, Wu C. Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2051(1): 31-40. |
| 40 | 刘安刚, 周庆福, 胡义成, 等. 基于MSCR与测力延度试验的阻燃改性沥青高低温性能评价[J]. 武汉理工大学学报: 交通科学与工程版, 2022, 46(4): 713-717. |
| Liu An-gang, Zhou Qing-fu, Hu Yi-cheng, et al. Evaluation of high and low temperature performance of flame-retardant modified asphalt based on MSCR and force ductility test[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2022, 46(4): 713-717. |
| [1] | 杨彦海,李百川,杨野,王崇骅,岳靓. 基于虚拟劈裂试验的集料椭球表面基构造[J]. 吉林大学学报(工学版), 2025, 55(2): 653-663. |
| [2] | 念腾飞,韩召,魏智强,王国伟,戈锦果,李萍. 考虑骨料形态的沥青混合料细观数值建模方法[J]. 吉林大学学报(工学版), 2025, 55(2): 639-652. |
| [3] | 韦万峰,孔令云,禤炜安,杨帆,郭鹏. 沥青发泡特性及温拌混合料水分敏感性综述[J]. 吉林大学学报(工学版), 2025, 55(1): 20-35. |
| [4] | 郭风春,毕海鹏,王海涛,吴树正,杨泓雨. 基于时温等效的纳米碳粉改性沥青黏弹行为[J]. 吉林大学学报(工学版), 2025, 55(1): 221-229. |
| [5] | 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996. |
| [6] | 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987. |
| [7] | 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707. |
| [8] | 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718. |
| [9] | 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266. |
| [10] | 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057. |
| [11] | 徐进,陈正欢,廖祺硕,郑展骥,张河山. 基于心电数据的高速公路高密度互通立交驾驶负荷[J]. 吉林大学学报(工学版), 2024, 54(10): 2807-2818. |
| [12] | 朱洪洲,苏春力,唐乃膨,魏俊尧,孙宏军. 胶粉改性沥青排放物采样及定量分析方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2922-2929. |
| [13] | 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187. |
| [14] | 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43. |
| [15] | 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21. |
|
||