吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3626-3636.doi: 10.13229/j.cnki.jdxbgxb.20231030
Yong WANG1(
),Yu-xiao BIAN1,Xin-chao LI1,Chun-ming XU2,Gang PENG2,Ji-kui WANG2
摘要:
针对有雾的场景中图像采集系统采集到的图像会出现细节缺失、色彩暗淡、亮度降低的问题,在一体化去雾网络(AOD)理论的基础上提出一种多尺度编码-解码神经网络(MSAOD)模型进行图像去雾。本文网络模型分为3个模块:①预处理模块,将输入图像分为2部分进行预处理;②主干模块,通过多尺度编码器-解码器对第1部分的输出进行特征提取;③后处理模块,对特征图进行映射操作。通过训练得到去雾图像,实验结果表明,本文方法要优于主流的深度学习和传统方法的图像去雾效果,去雾后的图像在细节、色彩和亮度等方面都有所优化。
中图分类号:
| 1 | He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353. |
| 2 | Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image[C]∥2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan,2009: 2201-2208. |
| 3 | Sulami M, Glatzer I, Fattal R, et al. Automatic recovery of the atmospheric light in hazy images[C]∥2014 IEEE International Conference on Computational Photography (ICCP).Santa Clara, USA,2014: 1-11. |
| 4 | Cai B L, Xu X M, Jia K. An end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. |
| 5 | Qin X, Wang Z L, Bai Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]∥Proceedings of the AAAI Conference on Artificial Intelligence,New York,USA,2020: 11908-11915. |
| 6 | 顼聪,陶永鹏,朱毅,等.基于图像块高位平面无损压缩的可逆信息隐藏方法[J].东北师大学报: 自然科学版, 2023, 55(3): 101-108. |
| Xu Cong, Tao Yong-peng, Zhu Yi. Reversible data hiding method based on image block high bit planes lossless compression[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(3): 101-108. | |
| 7 | Liu X H, Ma Y R, Shi Z H, et al. Griddehazenet: Attention-based multi-scale network for image dehazing[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision,Seoul,Korean, 2019: 7314-7323. |
| 8 | 刘雪,赵辰一,乔双,等. 基于SVD和残差图像的噪声强度估计方法及其在中子图像去噪中的应用[J].东北师大学报: 自然科学版, 2024, 56(3): 62-69. |
| Liu Xue, Zhao Chen-yi, Qiao Shuang,et al. Noise intensity estimation method based on SVD and residual images for neutron image denoising[J]. Journal of Northeast Normal University(Natural Science Edition), 2024, 56(3): 62-69. | |
| 9 | 周军,孔菁菁.多策略改进的麻雀搜索算法及其应用[J].东北师大学报: 自然科学版, 2024, 56(4): 81-88. |
| Zhou Jun, Kong Jing-jing. Multi-strategy improved sparrow search algorithm and its application[J]. Journal of Northeast Normal University(Natural Science Edition), 2024, 56(4): 81-88. | |
| 10 | Shit S, Das D K, Ray D N, et al. An encoder‐decoder based CNN architecture using end to end dehaze and detection network for proper image visualization and detection[J]. Computer Animation and Virtual Worlds, 2023, 34(6): No.e2147. |
| 11 | Li B, Zhao J J, Fu H. DLT-Net: deep learning transmittance network for single image haze removal[J]. Signal, Image and Video Processing, 2020, 14(6): 1245-1253. |
| 12 | Zhang S D, He F Z, Ren W Q, et al. Joint learning of image detail and transmission map for single image dehazing[J]. The Visual Computer, 2020, 36(2): 305-316. |
| 13 | Wang A N, Wang W H, Liu J L, et al. AIPNet: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2018, 28(1): 381-393. |
| 14 | Roy S, Chaudhuri S S. SIVDSR-Dhaze: Single Image Dehazing with Very Deep Super Resolution Framework and Its Analysis[J].Scientific Visualization, 2022, 14(5): 16-44. |
| 15 | Wang C, Shen H Z, Fan F, et al. EAA-Net: a novel edge assisted attention network for single image dehazing[J]. Knowledge-Based Systems, 2021, 228: 107279. |
| 16 | Baskar H, Chakravarthy A S, Garg P, et al. NDENet: end-to-end nighttime dehazing and enhancement[J]. International Journal of Computer and Information Engineering, 2022, 16(11): 540-548. |
| 17 | Thomas R, Thampi L, Kamal S, et al. Dehazing underwater images using encoder decoder based generic model-agnostic convolutional neural network[C]∥2021 International Symposium on Ocean Technology (SYMPOL), Piscataulay,NJ, 2021: 1-4. |
| 18 | Zhao L Q, Zhang Y P, Cui Y. An attention encoder-decoder network based on generative adversarial network for remote sensing image dehazing[J]. IEEE Sensors Journal, 2022, 22(11): 10890-10900. |
| 19 | Kim G, Ha S, Kwon J. Adaptive patch based convolutional neural network for robust dehazing[C]∥2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 2845-2849. |
| 20 | Li C Y, Guo J C, Porikli F, et al. A cascaded convolutional neural network for single image dehazing[J]. IEEE Access, 2018, 6: 24877-24887. |
| 21 | Song Y F, Li J, Wang X G, et al. Single image dehazing using ranking convolutional neural network[J]. IEEE Transactions on Multimedia, 2017, 20(6): 1548-1560. |
| 22 | You Y, Lu C W, Wang W M, et al. Relative CNN-RNN: learning relative atmospheric visibility from images[J]. IEEE Transactions on Image Processing, 2018, 28(1): 45-55. |
| 23 | Chen D D, He M M, Fan Q N, et al. Gated context aggregation network for image dehazing and deraining[C]∥2019 IEEE Winter Conference on Applications of Computer Vision (WACV),Waikoloa Village,USA, 2019: 1375-1383. |
| 24 | Liu K, He L Y, Ma S P, et al. A sensor image dehazing algorithm based on feature learning[J]. Sensors, 2018, 18(8): 2606. |
| 25 | Xiao J S, Zhou J L, Lei J F, et al. Image hazing algorithm based on generative adversarial networks[J]. IEEE Access, 2019, 8: 15883-15894. |
| 26 | Li R D, Pan J S, Li Z H, et al. Single image dehazing via conditional generative adversarial network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,USA, 2018: 8202-8211 |
| 27 | Liu W, Hou X X, Duan J, et al. End-to-end single image fog removal using enhanced cycle consistent adversarial networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7819-7833. |
| 28 | Zhang X H.Research on Remote sensing image de-haze based on GAN[J].Journal of Signal Processing Systems, 2022, 94(3): 305-313. |
| 29 | Zheng Y T, Su J, Zhang S, et al. Dehaze-AGGAN: unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. |
| 30 | Wang C H, Meng Z J, Xie R L, et al. A single image dehazing algorithm based on cycle-GAN[C]∥Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence,Shanghai, China, 2019: 247-251. |
| 31 | 郭璠. 图像去雾方法和评价及其应用研究[D]. 长沙:中南大学信息科学与工程学院, 2012. |
| Guo Pan.Research on image defogging,effect assessment and application[D]. Changsha: School of Information Science and Engineering, Central South University,2012. | |
| 32 | Narasimhan S G, Nayar S K. Removing weather effects from monochrome images[C]∥Proceedings of the 2001 IEEE Computer society Conference on Computer Vision and Pattern Recognition,Kauai, USA, 2001, 2: No.II. |
| [1] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [2] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
| [3] | 乔百友,武彤,杨璐,蒋有文. 一种基于BiGRU和胶囊网络的文本情感分析方法[J]. 吉林大学学报(工学版), 2024, 54(7): 2026-2037. |
| [4] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
| [5] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
| [6] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [7] | 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213. |
| [8] | 李雄飞,宋紫萱,朱芮,张小利. 基于多尺度融合的遥感图像变化检测模型[J]. 吉林大学学报(工学版), 2024, 54(2): 516-523. |
| [9] | 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332. |
| [10] | 赵彬,吴成东,张雪娇,孙若怀,姜杨. 基于注意力机制的机械臂目标抓取网络技术[J]. 吉林大学学报(工学版), 2024, 54(12): 3423-3432. |
| [11] | 车娜,朱奕明,赵剑,孙磊,史丽娟,曾现伟. 基于联结主义的视听语音识别方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2984-2993. |
| [12] | 陈岳林,高铸成,蔡晓东. 基于BERT与密集复合网络的长文本语义匹配模型[J]. 吉林大学学报(工学版), 2024, 54(1): 232-239. |
| [13] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
| [14] | 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429. |
| [15] | 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436. |
|