吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 175-184.doi: 10.13229/j.cnki.jdxbgxb.20230325

• 交通运输工程·土木工程 • 上一篇    

基于双目视觉的道路水深在线检测算法

王军年1(),曹宇靖1,罗智仁1,李凯旋1,赵文伯1,孟盈邑2   

  1. 1.吉林大学 汽车底盘集成与仿生全国重点实验室,长春 130022
    2.吉林大学 地下水资源与环境教育部重点实验室,长春 130012
  • 收稿日期:2023-04-08 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:王军年(1981-),男,教授,博士. 研究方向:电动汽车节能与控制,线控底盘与自驾规控.E-mail: wjn@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52272365);吉林省自然科学基金项目(20220101200JC);徐州市2023年科技成果转化计划项目(KC23357);中央高校基本科研业务费专项资金项目

Online detection algorithm of road water depth based on binocular vision

Jun-nian WANG1(),Yu-jing CAO1,Zhi-ren LUO1,Kai-xuan LI1,Wen-bo ZHAO1,Ying-yi MENG2   

  1. 1.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    2.Key Lab of Groundwater Resources and Environment Ministry of Education,Jilin University,Changchun 130012,China
  • Received:2023-04-08 Online:2025-01-01 Published:2025-03-28

摘要:

涉水驾驶会给驾驶员及乘客的生命财产安全带来风险,为提高涉水驾驶的安全性,本文采用双目视觉与激光投射相结合的技术方案,基于水下虚像的成像规律,提出一种用于前方水深计算的双目视觉算法,该算法仅需自车传感器采集的数据。为验证本文算法的有效性,进行实验验证,结果表明:理想情况下,本文算法计算结果的相对误差在3%以内,面对实际场景时,求平均值、滤波的方法可以减小水面波动的影响,浑浊水体引入的相对误差最大约7%,这证明本文算法具有较好的准确性和鲁棒性,可以为驾驶员提供前方水深信息,辅助驾驶员判断路况。

关键词: 车辆工程, 水深检测, 双目视觉, 驾驶辅助, 坐标转换, 激光像点

Abstract:

Wading driving poses risks to the life and property safety of drivers and passengers. To improve the safety of wading driving, a technical solution combining binocular vision and laser projection was adopted. Based on the imaging law of underwater virtual images, a binocular vision algorithm for calculating the depth of water ahead was proposed, which only requires data collected by the vehicle's sensors. To verify the effectiveness of the algorithm, experimental verification is conducted. The results showed that under ideal conditions, the relative error of the algorithm's calculation results was within 3%. In practical scenarios, the methods of averaging and filtering can reduce the impact of water surface fluctuations, and the maximum relative error introduced by turbid water is about 7%. This proves that the algorithm proposed has good accuracy and robustness and can provide drivers with water depth information ahead to assist drivers in judging road conditions.

Key words: vehicle engineering, water depth detection, binocular vision, driving aids, coordinate transformation, laser image spot

中图分类号: 

  • U471.15

图1

水中虚像成像示意图"

图2

水中虚像在双目摄像头中的成像原理"

图3

水中虚像的拍摄光路图"

图4

俯视水面的点位置关系图"

图5

双目摄像头成像原理"

图6

双目摄像头拍摄光路图"

图7

参数标定实验平台"

表1

参数标定实验数据"

参数实验序号
12345678910平均值
zP /mm500500550550600600650650700700
B/mm1001201001201008010090100110
nxl/像素20333115527314638149100131176
nxr/像素-445-445-434-434-392-392-349-349-332-332
nf /像素3 2403 2333 2403 2403 2283 2253 2373 2433 2413 2333 236

图8

正确性验证实验平台"

图9

正确性验证实验结果"

表2

正确性验证实验数据"

参数实验序号
123456789101112131415
bO /mm223223223191191190156156161119119121929295
α/弧度0.60.60.60.60.60.660.660.660.480.480.480.420.420.420.3
B/mm1001401201009010010080100100150100100150100
nxl/像素5789667724944074544773014324459104465401020579
nyl/像素-1 009-1 004-1 007-490-490-281-169-171-845-694-674-921-783-753-1 278
nxr/像素-386-386-386-362-362-401-397-397-466-475-475-486-404-404-400
nyr/像素-1 006-1 006-1 006-482-482-280-162-162-849-697-697-926-786-786-1 272
H/mm828282115115115150150150192192192222222222
h1/mm808080115116112146147147189189189219217222
误差/mm-2-2-201-3-4-3-3-3-3-3-3-50

相对误

差/%

-2.4-2.4-2.40.00.9-2.6-2.7-2.0-2.0-1.6-1.6-1.6-1.4-2.30.0
h2/mm535252707068868789110108111124119127
误差/mm-29-30-30-45-45-47-64-63-61-82-84-81-98-103-95

相对误

差/%

-35-37-37-39-39-41-43-42-41-43-44-42-44-46-43

表3

水面波动实验数据"

参数实验序号
12345678910后9组平均值
nxl/像素269271274265264260271272268263
nyl/像素-956-953-957-961-957-960-957-956-955-966
nxr/像素-627-633-629-626-629-629-623-625-634-626
nyr/像素-941-951-939-944-942-948-961-945-957-939
h0/mm136136136136136136136136136136
h/mm136131133139137139135135132141135.78
误差/mm0-5-3313-1-1-45-0.22
相对误差/%0.0-3.7-2.22.20.72.2-0.7-0.7-2.93.7-0.2

图10

水面波动实验结果"

图11

水质适应性实验平台"

表4

水质适应性实验数据"

参数实验序号
12345678
浊度/NTU0.75.96.89.815.016.817.719.3
nxl/像素253253253254253252253253
nyl/像素-10-6-8469711
nxr/像素-29-29-30-29-29-31-31-30
nyr/像素-8-3-668111014
h0/mm108108108108108108108108
h/mm108107107103104102101101
误差/mm0-1-1-5-4-6-7-7
相对误差/%0.0-0.9-0.9-4.6-3.7-5.6-6.5-6.5

图12

水质适应性实验结果"

1 Yamaguchi K. Trends in extreme weather events induced by global climate change[J]. Electrical Engineering in Japan, 2021, 214(2): No.23306.
2 任宏昌, 张恒德. 郑州“7·20”暴雨的精细化特征及主要成因分析[J]. 河海大学学报:自然科学版, 2022, 50(5): 1-9.
Ren Hong-chang, Zhang Heng-de. Refined features and main causes of "7·20" rainstorm in Zhengzhou[J]. Journal of Hohai University (Natural Sciences), 2022, 50(5): 1-9.
3 Zheng X, Su D H. Analysis and research on vehicle wading performance[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(1): 3-15.
4 Khapane P, Chavan V, Ganeshwade U. Water ingress analysis and splash protection evaluation for vehicle wading using non-classical CFD simulation[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2017, 10(1): 183-194.
5 黄晓明, 曹青青, 刘修宇, 等. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报:工学版, 2019, 49(3): 757-765.
Huang Xiao-ming, Cao Qing-qing, Liu Xiu-yu, et al. Simulation of vehicle braking performance on rainy days based on pavement surface fractal friction theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 757-765.
6 Spitzhüttl F, Goizet F, Unger T, et al. The real impact of full hydroplaning on driving safety[J]. Accident Analysis & Prevention, 2020, 138:No. 105458.
7 Varshney M, Ballani A, Pasunurthi S, et al. Transient, 3D CFD, moving mesh simulation of vehicle water wading in a water tunnel with inclined entry-exit[C]∥WCX SAE World Congress Experience, Online,2022: 2022-01-0768.
8 Varshney M, Pasunurthi S S, Maiti D, et al. CFD method development for simulating water fording for a passenger car[C]∥SAE WCX Digital Summit, Online,2021: 2021-01-0205.
9 Zhu H, Song R. Underwater image enhancement for automotive wading[C]∥The 13th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 2021: 5-9.
10 Bystrov A, Hoare E, Gashinova M, et al. Underwater optical imaging for automotive wading[J]. Sensors, 2018, 18(12):No. 4476.
11 J·夏普. 用于确定和显示涉水状况的方法和系统及具有该系统的车辆[P]. 中国: CN201910700255.1, 2020-02-28.
12 朱文强, 曹怡然. 用于车辆的涉水状态显示方法[P]. 中国: CN201910099467.9, 2022-03-29.
13 栾清华, 秦志宇, 王东, 等. 城市暴雨道路积水监测技术及其应用进展[J]. 水资源保护, 2022, 38(1): 106-116, 140.
Luan Qing-hua, Qin Zhi-yu, Wang Dong, et al. Review on monitoring technology of urban road waterlogging after rainstorm and its application[J]. Water Resources Protection, 2022, 38(1): 106-116, 140.
14 李纪玄, 李琦, 安胜伟. 车辆涉水探测方法、系统及车辆[P]. 中国: CN201710400538.5, 2021-06-11.
15 罗金亮, 廖国红, 李明. 路面水深检测方法、装置及车辆[P]. 中国: CN201610958066.0, 2021-08-10.
16 高鲁涛. 一种积水深度确定方法及装置[P]. 中国: CN202180000406.8, 2021-07-23.
17 唐帅. 用于车辆的水深检测系统和方法[P]. 中国: CN201710169691.1, 2021-01-08.
18 王军年, 曹宇靖, 赵文伯, 等. 一种道路积水车载在线监测与驾驶辅助系统及方法[P]. 中国: CN202110281787.3, 2022-09-02.
19 夏清华, 屈少华. 水中物体的视深度[J]. 物理通报, 1999(1): 13-14.
Xia Qing-hua, Qu Shao-hua. Apparent depth of objects in water[J]. Physics Bulletin, 1999(1): 13-14.
20 耿英楠. 立体匹配技术的研究[D]. 长春: 吉林大学通信工程学院, 2014.
Geng Ying-nan. Research on stereo matching algorithms[D]. Changchun: College of Communication Engineering, Jilin University, 2014.
[1] 李寿涛,杨路,屈如意,孙鹏鹏,于丁力. 基于模型预测控制的滑移率控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2687-2696.
[2] 吴量,顾义凡,邢彪,马芳武,倪利伟,贾微微. 基于线性二次型调节器的四轮转向与分布式集成控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2414-2422.
[3] 王玉海,李晓之,李兴坤. 面向高速工况的混合动力卡车预见性节能算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2121-2129.
[4] 常胜,刘宏飞,邹乃威. 汽车变曲率路径循迹H回路成形鲁棒控制[J]. 吉林大学学报(工学版), 2024, 54(8): 2141-2148.
[5] 刘建泽,柳江,李敏,章新杰. 基于最小二乘的车速解耦路面辨识方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1821-1830.
[6] 谢宪毅,张明君,金立生,周彬,胡涛,白宇飞. 考虑舒适度的智能汽车人工蜂群轨迹规划方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1570-1581.
[7] 刘从臻,陈高,刘洪柱,马强,徐成伟,孟辉,王国林. 湿滑路面轮胎接地力学特性模型[J]. 吉林大学学报(工学版), 2024, 54(6): 1501-1511.
[8] 黄玲,崔躜,游峰,洪佩鑫,钟浩川,曾译萱. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1195.
[9] 张自超,陈建. 基于双目仿鹰眼视觉与超分辨的果园三维点云重建[J]. 吉林大学学报(工学版), 2024, 54(5): 1469-1481.
[10] 郭洪艳,王连冰,赵旭,戴启坤. 考虑侧向运动的整车质量与道路坡度估计[J]. 吉林大学学报(工学版), 2024, 54(5): 1175-1187.
[11] 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213.
[12] 汪少华,张启睿,施德华,殷春芳,李春. 双行星排式混合动力传动系统非线性振动响应特性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 890-901.
[13] 高镇海,蔡荣贵,孙天骏,于桐,赵浩源,班浩. 人机共驾下的驾驶行为数据滤波方法[J]. 吉林大学学报(工学版), 2024, 54(3): 589-599.
[14] 谢宪毅,王禹涵,金立生,赵鑫,郭柏苍,廖亚萍,周彬,李克强. 基于改变控制时域时间步长的智能车轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(3): 620-630.
[15] 邓小林,杨馥模,覃善甘. 新型仿竹六边形梯度层级多胞管耐撞性对比分析[J]. 吉林大学学报(工学版), 2024, 54(2): 333-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!