吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 623-630.doi: 10.13229/j.cnki.jdxbgxb.20230479
• 交通运输工程·土木工程 • 上一篇
Hua-zhen FANG(
),Li LIU,Qing GU(
),Xiao-feng XIAO,Yu MENG
摘要:
为实现智能网联车对周围车辆驾驶意图的准确辨识,提出了一种基于轨迹预测与极限梯度提升算法(XGBoost)的驾驶意图识别框架。首先,通过标注车辆历史轨迹的驾驶意图来建立离线训练数据集。其次,构建驾驶意图识别框架,通过混合示教的长短时记忆网络(LSTM)模块预测目标车辆的未来轨迹,XGBoost模块融合历史轨迹和未来轨迹来识别出驾驶意图。最后,采用实际道路数据集NGSIM(Next Generation SIMulation)US101和I-80路段来验证模型框架。实验结果表明:该方法在4 s历史轨迹预测3 s未来轨迹处识别准确率可达97.7%,表现出较强的驾驶意图识别能力。实现代码见网站:https:∥gitee.com/fanghz-colin/lstm-xgboost.git。
中图分类号:
| 1 | Xing Y, Lyu C, Wang H, et al. Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4377-4390. |
| 2 | Houenou A, Bonnifait P, Cherfaoui V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013: 4363-4369. |
| 3 | 谢枫, 娄静涛, 赵凯, 等. 基于行为识别和曲率约束的车辆轨迹预测方法研究[J]. 汽车工程, 2019, 41(9): 1036-1042. |
| Xie Feng, Lou Jing-tao, Zhao Kai, et al. A research on vehicle trajectory prediction method based on behavior recognition and curvature constraints[J]. Automotive Engineering, 2019, 41(9): 1036-1042. | |
| 4 | Tsogas M, Polychronopoulos A, Floudas N, et al. Situation refinement for vehicle maneuver identification and driver's intention prediction[C]∥ 10th International Conference on Information Fusion, Quebec City, Canada, 2007: No.4408203. |
| 5 | Wang X, Guo Y, Bai C, et al. Driver's intention identification with the involvement of emotional factors in two-lane roads[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 6866-6874. |
| 6 | 祝俪菱, 刘澜, 赵新朋, 等. 基于支持向量机的车辆驾驶行为识别研究[J]. 交通运输系统工程与信息, 2017, 17(1): 91-97. |
| Zhu Li-ling, Liu Lan, Zhao Xin-peng, et al. Driver behavior recognition based on support vector machine[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 91-97. | |
| 7 | Berndt H, Emmert J, Dietmayer K. Continuous driver intention recognition with hidden markov models[C]∥ 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 2008: 1189-1194. |
| 8 | Liu Q, Xu S, Lu C, et al. Early recognition of driving intention for lane change based on recurrent hidden semi-Markov model[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10545-10557. |
| 9 | 刘志强, 吴雪刚, 倪捷, 等. 基于HMM和SVM级联算法的驾驶意图识别[J]. 汽车工程, 2018, 40(7): 858-864. |
| Liu Zhi-qiang, Wu Xue-gang, Ni Jie, et al. Driving intention recognition based on hmm and svm cascade algorithm[J]. Automotive Engineering, 2018, 40(7): 858-864. | |
| 10 | Fang H, Liu L, Gu Q, et al. Driving intention recognition of human drivers in mixed traffic flow[C]∥ IEEE 25th International Conference on Intelligent Transportation Systems, Macao, China, 2022: 153-157. |
| 11 | 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. |
| Ji Xue-wu, Fei Cong, He Xiang-kun, et al. Intention recognition and trajectory prediction for vehicles using lstm network[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42. | |
| 12 | Chandra R, Guan T, Panuganti S, et al. Forecasting trajectory and behavior of road-agents using spectral clustering in graph-lstms[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4882-4890. |
| 13 | 赵健, 宋东鉴, 朱冰, 等. 数据机理混合驱动的交通车意图识别方法[J]. 汽车工程, 2022, 44(7): 997-1008. |
| Zhao Jian, Song Dong-jian, Zhu Bing, et al. Traffic vehicles intention recognition method driven by data and mechanism hybrid[J]. Automotive Engineering, 2022, 44(7): 997-1008. | |
| 14 | 赵建东, 赵志敏, 屈云超, 等. 轨迹数据驱动的车辆换道意图识别研究[J]. 交通运输系统工程与信息, 2022, 22(4): 63-71. |
| Zhao Jian-dong, Zhao Zhi-min, Qu Yun-chao, et al. Vehicle lane change intention recognition driven by trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 63-71. | |
| 15 | Guo H, Keyvan E M, Xie K. Lane change detection and prediction using real-world connected vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: No.103785. |
| 16 | Zhang Y, Shi X, Zhang S, et al. A xgboost-based lane change prediction on time series data using feature engineering for autopilot vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19187-19200. |
| 17 | Chen T, Guestrin C. Xgboost: a scalable tree boosting system[C]∥ 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785-794. |
| 18 | Hu Y, Zhan W, Tomizuka M. Probabilistic prediction of vehicle semantic intention and motion[C]∥ IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 2018: 307-313. |
| 19 | Ding W, Chen J, Shen S. Predicting vehicle behaviors over an extended horizon using behavior interaction network[C]∥ International Conference on Robotics and Automation, Montreal, Canada, 2019: 8634-8640. |
| 20 | Altché F, Fortelle A. An LSTM network for highway trajectory prediction[C]∥ IEEE 20th International Conference on Intelligent Transportation Systems, Yokohama, Japan, 2017: 353-359. |
| 21 | 田彦涛, 黄兴, 卢辉遒, 等. 基于注意力与深度交互的周围车辆多模态行为轨迹预测[J]. 吉林大学学报: 工学版, 2023, 53(5): 1474-1480. |
| Tian Yan-tao, Huang Xing, Lu Hui-qiu, et al. Vehicle multi-modal maneuvers and trajectory prediction based on attention mechanism with deep interaction[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
| [1] | 陈永恒,杨家伟,孙经宇. 借道左转交叉口的网联左转车辆最佳轨迹控制[J]. 吉林大学学报(工学版), 2025, 55(2): 614-622. |
| [2] | 金盛,李博林,薛炜. 智能网联车借用公交专用道的轨迹与信号协同优化[J]. 吉林大学学报(工学版), 2025, 55(2): 566-576. |
| [3] | 李怀鑫,晏长根,林斌,石玉玲. 黏土-混凝土组合体强度及全过程统计损伤模型[J]. 吉林大学学报(工学版), 2025, 55(1): 245-255. |
| [4] | 吴飞,王鹏程,杨康. 基于PCA-SSA-XGBoost的车辆驾驶性评估[J]. 吉林大学学报(工学版), 2025, 55(1): 105-115. |
| [5] | 姚荣涵,祁文彦,胡宏宇,杜筱婧,乔延峰,王立冰. 考虑公交-合乘车道的多车道元胞自动机模型[J]. 吉林大学学报(工学版), 2025, 55(1): 162-174. |
| [6] | 周荣贵,高沛,李雨璇,周建. 基于轨迹数据的高速公路小客车异常驾驶行为[J]. 吉林大学学报(工学版), 2024, 54(9): 2581-2587. |
| [7] | 余萍,赵康,曹洁. 基于优化A-BiLSTM的滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2024, 54(8): 2156-2166. |
| [8] | 周求湛,冀泽宇,王聪,荣静. 基于在线压缩重构的非侵入式电力负荷监测[J]. 吉林大学学报(工学版), 2024, 54(6): 1796-1806. |
| [9] | 马庆禄,闫浩,聂振宇,李杨梅. 匝道合流区智能网联车辆协同控制方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1332-1346. |
| [10] | 许清津,付锐,郭应时,吴付威. 载货汽车弯道侧翻路侧预测方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1302-1310. |
| [11] | 蒲云,徐银,刘海旭,谭一帆. 考虑多车影响的智能网联车跟驰模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1285-1292. |
| [12] | 曹倩,李志慧,陶鹏飞,李海涛,马永建. 面向交通事故检测及预防的异质传感器布设方法[J]. 吉林大学学报(工学版), 2024, 54(4): 969-978. |
| [13] | 张鑫,胡启洲,何君,吴啸宇. 考虑交通梗塞的合流区交通状况诊断[J]. 吉林大学学报(工学版), 2024, 54(2): 478-484. |
| [14] | 张卫华,刘嘉茗,解立鹏,丁恒. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2024, 54(2): 469-477. |
| [15] | 温惠英,何梓琦,李秋灵,赵胜. 高速公路货车换道冲突预测及其影响因素分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2827-2836. |
|
||