吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1346-1355.doi: 10.13229/j.cnki.jdxbgxb.20230712

• 交通运输工程·土木工程 • 上一篇    下一篇

超声处置石油沥青的流变学响应及响应机理

王黎明1(),宋子坤1,2,周辉3,魏文1,袁浩1   

  1. 1.东北林业大学 土木与交通学院,哈尔滨 150040
    2.哈尔滨工业大学 交通科学与工程学院,哈尔滨 150010
    3.黑龙江省机场管理集团有限公司,哈尔滨 150010
  • 收稿日期:2023-07-07 出版日期:2025-04-01 发布日期:2025-06-19
  • 作者简介:王黎明(1975-),男,副教授,博士. 研究方向:路面结构与材料. E-mail: wlmdxx@126.com
  • 基金资助:
    国家自然科学基金区域创新发展联合基金项目(U20A20315);黑龙江省交通运输科技项目(HJK2023B014-3);黑龙江省交通运输厅科技项目(20210027);黑龙江省交投集团科技项目(JT-100000-ZC-FW-2021-0120)

Rheological response and response mechanism of petroleum asphalt treated with ultrasound

Li-ming WANG1(),Zi-kun SONG1,2,Hui ZHOU3,Wen WEI1,Hao YUAN1   

  1. 1.School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
    2.School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150010,China
    3.Heilongjiang Airport Management Group Co. ,Ltd. ,Harbin 150010,China
  • Received:2023-07-07 Online:2025-04-01 Published:2025-06-19

摘要:

为确定超声处置石油沥青的流变学响应规律,本文采用系列流变学测试手段,分析了3种典型石油沥青经历超声处置前后的指标变化。研究发现,超声使沥青高温实时黏度降低50%以上,并具有不可恢复的残留影响;中温时处置沥青略变软,触变界限提高;低温时处置沥青的蠕变能力降低。化学和微观分析表明,沥青中重质组分含量明显减少,沥青质聚集体均化分散。超声作用时的选择性不均匀加压加热引起沥青的裂化反应,是化学和流变性质变化的原因。功率超声对石油沥青的这种显著理化影响有用于温拌、再生、改性加工等道路工程技术的可能。

关键词: 道路工程, 沥青, 功率超声, 流变性质, 响应机理, 裂化反应

Abstract:

In order to determine the rheological response of ultrasonically disposed petroleum asphalt, a series of rheological tests were used to analyze the changes in the indexes of three typical petroleum asphalt before and after undergoing ultrasonic disposal. It was found that ultrasound reduces the real-time viscosity of asphalt at high temperature by more than 50%, and has an irrecoverable residual effect; the disposal asphalt becomes slightly softer and the thixotropic limit is increased at mid-temperature; and the creep capacity of the disposal asphalt is reduced at low temperature. Chemical and microanalysis showed that the content of heavy components in the asphalt was significantly reduced, and asphaltene aggregates were homogenized and dispersed. Selective inhomogeneous pressurized heating during ultrasound action induced a cracking reaction in the asphalt, which was responsible for the changes in chemical and rheological properties. This significant physicochemical effect of power ultrasound on petroleum asphalt has the potential to be used in road engineering techniques such as warm mixing, recycling, and modified processing.

Key words: road engineering, asphalt, power ultrasound, rheological properties, response mechanism, cracking reaction

中图分类号: 

  • U414

表1

沥青样品基础性能参数"

指标测值
50号70号90号
针入度P(25 ℃,5 s,100 g)/0.1 mm44.575.185.4
针入度指数PI-1.20-1.62-1.63
软化点(R&B)/℃54.248.247.0
15 ℃延度/cm87>100>100

RT

FO

质量变化/%-0.11-0.22-0.51
残留针入度比/%716566
15℃残留延度/cm195355
产地/来源塞内加尔/ERESSENEGAL

中国/中石化茂名石化

公司

中国/北方盘锦沥青公司

图1

自制超声处置装置"

图2

熔融沥青的实时黏度测试"

图3

熔融沥青的实时黏度测试"

图4

典型处置条件下沥青的实时黏度变化"

图5

处置后存储时间对黏度的影响"

图6

超声频率和温度双变量条件下的最大降黏率/残留降黏率曲面图"

图7

不同沥青的温度扫描曲线"

图8

不同沥青的频率扫描曲线"

图9

不同沥青的34 ℃应变扫描曲线"

图10

60 s劲度模量变化曲线"

图11

m值变化曲线"

图12

不同沥青的组分含量变化"

表2

不同沥青在超声处置前后的胶体稳定指数CI值"

条 件50#70#90#
超声处置前CI2.332.573.55
超声处置后CI2.572.613.76
处置后CI值相对变化/%10.21.46.1

图13

不同沥青的400倍显微图片"

[1] Suslick K S, Price G J. Applications of ultrasound to materials chemistry[J]. Annual Review of Materials Science, 1999, 29(1): 295-326.
[2] 孙仁远, 王连保, 彭秀君, 等. 稠油超声波降黏试验研究[J]. 油气田地面程, 2001, 20(5): 22-23.
Sun Ren-yuan, Wang Lian-bao, Peng Xiu-jun, et al. Experimental study on ultrasonic viscosity reduction of thick oil [J]. Oil and Gas Field Surface Procedure, 2001, 20(5): 22-23.
[3] Mehdi R, Jafar Q. Experimental investigation of the ultrasonic wave effects on the viscosity and thermal behaviour of an asphaltenic crude oil[J]. Chemical Engineering and Processing-Process Intensification,2020, 153:1 289-1295.
[4] Abarasi H. A review of technologies for transporting heavy crude oil and bitumen via pipelines[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(3): 327-336.
[5] 黄序韬, 梁淑寰. 声波采油的机理与特点研究[J]. 石油学报, 1993(4): 110-116.
Huang Xu-Tao, Liang Shu-Huan. Study on the mechanism and characteristics of acoustic wave oil recovery[J]. Journal of Petroleum, 1993(4): 110-116.
[6] Shedid S A. An ultrasonic irradiation technique for treatment of asphaltene deposition[J]. Journal of Petroleum Science & Engineering, 2004, 42(1): 57-70.
[7] Guo X, Du Z, Li G, et al. High frequency vibration recovery enhancement technology in the heavy oil fields of China[C]∥SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Bakersfield, California, USA, 2004.
[8] 黄欣桐, 周翠红, 郭艳彤,等. 超声应用于超重质渣油降黏的实验研究[J]. 北京石油化工学院学报, 2018, 26(1): 9-13.
Huang Xin-tong, Zhou Cui-hong, Guo Yan-tong, et al. Experimental study on ultrasound application to viscosity reduction of super-heavy residue oil[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(1): 9-13.
[9] Huang X T, Zhou C H, Suo Q Y, et al. Experimental study on viscosity reduction for residual oil by ultrasonic[J]. Ultrasonics Sonochemistry, 2018, 41:661-669.
[10] Mousavi S M, Ramazani A, Najafi I, et al. Effect of ultrasonic irradiation on rheological properties of asphaltic crude oils[J]. Petroleum Science, 2012, 9(1): 82-88.
[11] 张龙力, 杨国华, 阙国和, 等. 超声波处理对渣油胶体稳定性的改善作用初步研究[J]. 石油学报: 石油加工, 2010, 26(): 203-206.
Zhang Long-li, Yang Guo-hua, Que Guo-he, et al. Preliminary study on the improvement effect of ultrasonic treatment on the stability of residue colloid[J].Acta Petrolei Sinica(Petroleum Processing), 2010, 26(Sup.1): 203-206.
[12] 王瑞和, 万春浩, 周卫东, 等. 空化射流降低稠油黏度机制[J]. 中国石油大学学报:自然科学版, 2019, 43(5): 101-107.
Wang Rui-he, Wan Chun-hao, Zhou Wei-dong, et al. Mechanism of reducing viscosity of heavy oil by cavitation jet[J]. Journal of China University of Petroleum(Natural Science Edition), 2019, 43(5): 101-107.
[13] Hamidi H, Rafati R, Junin R B, et al. A role of ultrasonic frequency and power on oil mobilization in underground petroleum reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2012,2(1): 29-36.
[14] 寇杰, 王冰冰, 张益华. 原油超声降黏机制[J].中国石油大学学报: 自然科学版, 2019, 43(5): 185-190.
Kou Jie, Wang Bing-bing, Zhang Yi-hua. Ultrasonic viscosity reduction mechanism of crude oil[J]. Journal of China University of Petroleum(Natural Science Edition), 2019, 43(5): 185-190.
[15] 韦胜超, 姚志林, 卞贺, 等. 氢键作用对沥青质超分子聚集的影响[J]. 石油学报: 石油加工, 2021, 37(3):556-565.
Wei Sheng-chao, Yao Zhi-lin, Bian He, et al. Effect of hydrogen bonding on asphaltene supramolecular aggregation[J].Acta Petrolei Sinica(Petroleum Processing), 2021, 37(3): 556-565.
[16] 袁献伟. 超声波强化沥青发育技术研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2019.
Yuan Xian-wei. Research on the development technology of ultrasonic reinforced asphalt [D]. Harbin:School of Mechanical and Electrical Engineering, Harbin Institute of Technology, 2019.
[17] Wang L M, Song Z K, Gong C. Power ultrasound on asphalt viscoelastic behavior analysis[J]. Case Studies in Construction Materials, 2022, 16: No. e01012 .
[18] 王鹏, 姜海龙, 王健, 等. 碳纳米管/SBS复合改性沥青制备工艺的研究[J]. 山东建筑大学学报, 2019,34(6): 21-26.
Wang Peng, Jiang Hai-long, Wang Jian, et al. Study on preparation process of carbon nanotube/SBS composite modified bitumen[J].Journal of Shandong Jianzhu University, 2019, 34(6): 21-26.
[19] 唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3): 50-56, 76.
Tang Bo-ming, Ding Yong-jie, Zhu Hong-zhou, et al. Study on the characteristics of asphalt molecular aggregation state change[J].China Journal of Highway and Transport, 2013, 26(3): 50-56, 76.
[20] 詹小丽, 张肖宁, 卢亮. 沥青低温黏弹性能的预测[J]. 吉林大学学报: 工学版, 2008,38(3): 530-534.
Zhan Xiao-li, Zhang Xiao-ning, Lu Liang. Prediction of low-temperature viscoelastic properties of bitumen[J].Journal of Jilin University(Engineering Science), 2008,38(3): 530-534.
[21] 孙艳娜, 李立寒, 汪于凯. 沥青疲劳性能评价指标[J]. 西南交通大学学报, 2014, 49(6): 1102-1107.
Sun Yan-na, Li Li-han, Wang Yu-kai. Evaluation index of fatigue performance of asphalt[J].Journal of Southwest Jiaotong University, 2014, 49(6): 1102-1107.
[22] 董雨明, 谭忆秋. 硬质沥青混合料的动态黏弹特性[J]. 公路交通科技, 2015, 32(6): 18-24.
Dong Yu-ming, Tan Yi-qiu. Dynamic viscoelastic characteristics of hard asphalt mixture[J].Journal of Highway and Transportation Science and Technology, 2015, 32(6): 18-24.
[23] 张喜军, 仝配配, 蔺习雄, 等. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
Zhang Xi-jun, Tong Pei-pei, Lin Xi-xiong, et al. Evaluation of fatigue properties of hard asphalt based on linear amplitude scanning test[J].Materials Reports, 2021, 35(18): 18083-18089.
[24] 赵泽鹏, 李源, 李梦园, 等. 沥青老化过程中组分与微观形貌演变研究[J]. 炼油技术与工程, 2022, 52(1): 59-64.
Zhao Ze-peng, Li Yuan, Li Meng-yuan, et al. Study on component and micromorphological evolution during asphalt aging[J].Refining Technology and Engineering, 2022, 52(1): 59-64.
[1] 张安顺,付伟,张军辉,高峰. 长沙压实黏土剪切特性及应力-应变关系表征[J]. 吉林大学学报(工学版), 2025, 55(5): 1604-1616.
[2] 俞靖洋,李东钊,张志清,王真,孙海林,布海玲,李明春. 环保型蓄盐沥青混合料性能损伤演变[J]. 吉林大学学报(工学版), 2025, 55(3): 888-898.
[3] 徐俊鹏,郑传峰,杜艳韬,王雨航,路政,范文军. 寒区沥青混合料在水-热-力三场耦合作用下的损伤效应[J]. 吉林大学学报(工学版), 2025, 55(3): 877-887.
[4] 杨彦海,李百川,杨野,王崇骅,岳靓. 基于虚拟劈裂试验的集料椭球表面基构造[J]. 吉林大学学报(工学版), 2025, 55(2): 653-663.
[5] 念腾飞,韩召,魏智强,王国伟,戈锦果,李萍. 考虑骨料形态的沥青混合料细观数值建模方法[J]. 吉林大学学报(工学版), 2025, 55(2): 639-652.
[6] 韦万峰,孔令云,禤炜安,杨帆,郭鹏. 沥青发泡特性及温拌混合料水分敏感性综述[J]. 吉林大学学报(工学版), 2025, 55(1): 20-35.
[7] 郭风春,毕海鹏,王海涛,吴树正,杨泓雨. 基于时温等效的纳米碳粉改性沥青黏弹行为[J]. 吉林大学学报(工学版), 2025, 55(1): 221-229.
[8] 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996.
[9] 罗蓉,梁宇,牛茏昌,黄婷婷,苗强. 多温度条件沥青混合料水稳定性评价指标阈值[J]. 吉林大学学报(工学版), 2024, 54(7): 1966-1977.
[10] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[11] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[12] 李祖仲,李梦园,刘卫东,庞萧萧,唐豪,张学磊,马晨杨. 蔗渣纤维表面改性及其沥青混合料路用性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1738-1745.
[13] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[14] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[15] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .