吉林大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (增刊2): 12-16.

• 论文 • 上一篇    下一篇

轿车整体扭转刚度分配比的确定

管欣1, 史建鹏1,2   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春130022;
    2. 东风汽车公司技术中心, 武汉430056
  • 收稿日期:2010-10-15 出版日期:2011-09-30 发布日期:2011-09-30
  • 通讯作者: 史建鹏(1973),男,博士研究生。研究方向:汽车CAE仿真。E-mail:shijp@dfmc.com.cn E-mail:shijp@dfmc.com.cn
  • 作者简介:管欣(1961),男,教授,博士生导师。研究方向:汽车动态仿真与控制。E-mail:hsguan@vip.163.com
  • 基金资助:

    “863”国家高技术研究发展计划项目(2006AA110101)

Distribution analysis for whole torsional stiffness of passenger car

GUAN Xin1, SHI Jian-peng1,2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. Dongfeng Motor Corporation Technical Center, Wuhan 430056, China
  • Received:2010-10-15 Online:2011-09-30 Published:2011-09-30

摘要:

采用计算机辅助工程分析(CAE)方法、台架试验和整车扭转试验方法,利用轿车行驶的常用工况,揭示了整车扭转机理。应用非线性插值理论提升了车身扭转刚度仿真值和试验值间的对标精度;对影响整车扭转刚度的车身扭转刚度和悬架系统侧倾角刚度进行了系统性分析。探索出了整体静态扭转测试原理和方法,得到整备车身的扭转刚度是白车身扭转刚度的1.72倍;前、后悬架的侧倾角刚度比例为1.44;整备车身的刚度值是悬架刚度值的10倍;白车身的刚度值是悬架刚度值的5.8倍;整车扭转刚度值是悬架刚度值的11倍,整车刚度值是白车身刚度值的1.89倍。在理论研究的基础上,探索出的3项轿车整体扭转刚度设计的匹配原则,为轿车悬架系统和车身的扭转刚度最佳匹配及整车开发提供了理论依据和设计方法。

关键词: 车辆工程, 车身, 悬架侧倾角刚度, 扭转刚度, 分配比

Abstract:

Based on the methods of CAE,bench testing and vehicle torsion test,the torsional mechanism of vehicle was revealed through using the normal condition.The research promotes the precision of the simulation value of the body torsional rigidity and the testing value by using the theory of non-linear interpolating,and the torsional stiffness of body and the torsional stiffness of suspension were systematically analyzed,and the theoretical basis and test methods for the static torsional stiffness of whole vehicle were provided,namely,the torsional stiffness of the equipped state body is 1.72 times than BIW,the proportion of the front suspension torsional stiffness and rear suspension is 1.44,the torsional stiffness of BIW is 5.8 times than suspension,the torsional stiffness of the equipped state body is 11 times than the suspension,ande the torsional stiffness of the equipped state body is 1.89 times than BIW.On the basis of the theory study,three matching principles are explored.It provides theoretical basis and design methods for the passenger car.The research results have the promotional value of practicability and a wide range of engineering application.

Key words: vehicle engineering, body, torsional stiffness of suspension, torsional stiffness, distribution

中图分类号: 

  • U461.6


[1] Enrico Sampo.Chassis torsional stiffness:analysis oft he influence on vehicle dynamics
[C]/SAE2010W orld Congress&Exhibition,Detroit,MI,USA, 2010.

[2] Shunichi Hasegawa.Influence of vehicle body tor-s ional stiffness on vehicle roll characteristics of me-d ium-duty trucks
[C]/International Truck&BusM eeting&Exposition,Detroit,MI,USA,1990.

[3] Huang Song.General torsional stiffness matching ofo ff-road vehicle
[J].Chinese Journal of MechanicalE ngineering(English Edition),2009,22(3):331- 335.

[4] Reimpell Jornsen.The Automotive Chassis:Engi-n eering Principles
[M].Warrendale,USA:Society ofA utomotive Engineers,Inc,2001.

[5] Bastow Donald.Car Suspension and Handling
[M].W arrendale,USA:Society of Automotive Engineers,I nc,1993.

[6] Shinobu Manabu.Transferred load and its course inp assenger car bodies
[J].JSAE Review,1995,16(2): 145-150.

[7] 史建鹏.轻型高机动越野汽车车轮定位参数设计匹 配研究
[D].北京:清华大学汽车系,2005.S hi Jian-peng.Research into weel alignment param-e ter matching of light-high mobility off-road vehicle
[D].Beijing:Vehicle Department of Tsinghua Uni-v ersity,2005.

[8]
[美]罗伯特D库克,迈克尔.有限元分析的概念与应 用
[M].关正西等译.西安:西安交通大学出版社, 2007.

[9] Milliken D L,Kasprzak E M,Metz L D,et al.Racec ar vehicle dynamics
[C]∥SAE International,War-r endale,PA,1995.

[10] Genta G,Morello L.The Automotive Chassis Vol.2:S ystem Design
[M].New York:Springer,2009.

[11] Fenton John.Handbook of Vehicle Design Analysis
[ M].UK:Professional Engineering Publishing Lim-i ted,1999.

[12] Braess Hans-Hermann,Seiffert Ulrich.Handbook ofA utomotive Engineering
[M].USA:Warrendale,P ennsylvania,2005.

[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!