吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1609-1615.doi: 10.13229/j.cnki.jdxbgxb201406012

• • 上一篇    下一篇

考虑侧向偏移的车辆跟驰行为建模及仿真

徐程1, 2, 曲昭伟2, 金盛3   

  1. 1.浙江警察学院 治安系, 杭州 310053;
    2.吉林大学 交通学院, 长春 130022;
    3.浙江大学 建筑工程学院, 杭州 310058
  • 收稿日期:2012-12-17 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 金盛(1982-),男,讲师,博士.研究方向:交通流理论,交通控制.E-mail:jinsheng@zju.edu.cn
  • 作者简介:徐程(1985-),女,硕士.研究方向:交通管理,智能交通.E-mail:
  • 基金资助:
    国家自然科学基金项目(51278220,51208462,51278454); 中央高校基本科研业务费专项基金项目

Modeling and simulation of car following behavior considering lateral separation

XU Cheng1, 2, QU Zhao-wei2, JIN Sheng3   

  1. 1.Department of Public Order, Zhejiang Police College, Hangzhou 310053, China;
    2.College of Transportation, Jilin University, Changchun 130022, China;
    3.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
  • Received:2012-12-17 Online:2014-11-01 Published:2014-11-01

摘要: 为了描述真实交通环境中车辆交错跟驰的现象,在全速度差模型的基础上引入了视觉角和侧向偏移角的概念,采用侧向偏移角变化率作为衡量车辆横向运动的关键参数并建立了考虑侧向偏移的车辆跟驰模型。通过线性稳定性分析得到了新模型的稳定性条件。理论分析和数值仿真结果表明:改进模型能够有效地描述车辆交错跟驰行为对交通流稳定性的影响,侧向偏移会减少交通流稳定区间,更容易使稳定车流变成时走时停交通流。

关键词: 交通运输系统工程, 跟驰模型, 视觉角, 侧向偏移

Abstract: In order to describe staggered car following behavior in real traffic environment, a novel car following model was proposed based on Full Velocity Difference (FVD) model by incorporating the visual angle. The rate of change of the lateral separation angle is taken as a key parameter to describe the effect of lateral separation distance. The stability condition of the model was obtained using the linear stability theory. Then the characteristic of the model was investigated by theoretical analysis and numerical simulation. Results show that the lateral separation leads the stability of the proposed model smaller and the easy formation of stop and go traffic. The above findings have great practical significance to improve the stability of traffic flow and analyze car-following characteristics considering the lateral movement.

Key words: engineering of communications and transportation system, car following model, visual angle, lateral separation

中图分类号: 

  • U491
[1] Pipes L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3): 274-281.
[2] Brackstone M, Mcdonald M. Car-following: a historical review[J]. Transportation Research Part F, 1999, 2(4): 181-196.
[3] Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems[J]. Physical Report, 2000, 329(4): 199-329.
[4] Meng Q, Qu X. Estimation of rear-end vehicle crash frequencies in urban road tunnels[J]. Accident Analysis and Prevention, 2012, 48(1):254-263.
[5] Qu X, Meng Q, Yuanita V, et al. Design and implementation of a quantitative risk assessment software tool for singapore's road tunnels[J]. Expert Systems with Applications,2011,38(11):13827-13834.
[6] Meng Q, Qu X, Yong K T, et al. QRA model-based risk impact analysis of traffic flow in urban road tunnels[J]. Risk Analysis, 2011, 31(12): 1872-1882.
[7] Bando M, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.
[8] Helbing D, Tilch B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138.
[9] Jiang R, Wu Q S, Zhu Z J. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64(1): 7101-7104.
[10] Nagatani T. Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction[J]. Physical Review E, 1999, 60(6): 6395-6401.
[11] Ge H X, Cheng R J, Li Z P. Two velocity difference model for a car following theory[J]. Physica A, 2008, 387(21):5239-5245.
[12] 金盛, 王殿海. 考虑前方交通状态的车辆跟驰模型与数值仿真[J]. 北京工业大学学报, 2012, 38(8): 1236-1241. Jin Sheng, Wang Dian-hai. Car following model and simulation considering front traffic situation[J]. Journal of Beijing Polytechnic University, 2012, 38(8): 1236-1241.
[13] Gunay B. Car following theory with lateral discomfort[J]. Transportation Research Part B, 2007, 41(7): 722-735.
[14] Jin S, Wang D H, Tao P F, et al. Non-lane-based full velocity difference car following model[J]. Physica A, 2010, 389(21): 4654-4662.
[15] Tang T Q, Huang H J, Gao Z Y. Stability of the car-following model on two lanes[J]. Physical Review E, 2005, 72(6): 6142-6148.
[17] Andersen G J, Sauer C W. Optical information for car following: the driving by visual angle(DVA) model[J]. Human Factors, 2007, 49(5): 878-896.
[18] Jin S, Wang D H, Huang Z Y, et al. Visual angle model for car following theory[J]. Physica A, 2011, 390(11): 1931-1940.
[19] Gong H X, Liu H C, Wang B H. An asymmetric full velocity difference car-following model[J]. Physica A, 2008, 387(11): 2595-2602.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!