吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1029-1035.doi: 10.13229/j.cnki.jdxbgxb201504001

• •    下一篇

基于制动感觉的制动能量回收系统的设计与匹配

初亮, 杨毅, 张世桐, 黄禹霆   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2013-12-01 出版日期:2015-07-01 发布日期:2015-07-01
  • 通讯作者: 杨毅(1984-),男,博士研究生.研究方向:节能与新能源汽车.E-mail:yangyi5678@yeah.net
  • 作者简介:初亮(1967-),男,教授,博士生导师.研究方向:节能与新能源汽车.E-mail:chuliang@126.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2012AA110903)

Design and match of regenerative braking system based on braking feeling

CHU Liang, YANG Yi, ZHANG Shi-tong, HUANG Yu-ting   

  1. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2013-12-01 Online:2015-07-01 Published:2015-07-01

摘要: 基于目前国内硬件资源储备现状,以保证制动感觉为前提条件,提出了一种带有增压模拟器的制动能量回收系统硬件方案,根据开发的制动能量回收系统在制动过程中各个状态下的部件控制过程,结合需求极限流量及轮缸压力与体积对应关系完成对模拟器的结构设计与参数匹配,并在基于xPC功能搭建的试验台架上进行系统功能验证,台架试验结果表明带有增压模拟器的制动能量回收系统能够在满足制动需求、保证制动感觉的同时较大程度地回收制动能量。

关键词: 车辆工程, 制动能量回收系统, 增压模拟器, 制动感觉

Abstract: Based the current state of domestic hardware resource, a scheme of regenerative braking system with the function of active pressurization simulation was proposed with the premise of ensuring braking feeling. Based on the control process of components of the proposed regenerative braking system combined with the ultimate flow requirement and p-V characteristics of the wheel cylinder, the design of the simulator structure was completed. Besides, the function of the system was verified on the experimental bench, which was set up with the application of xPC. The results show that the regenerative braking system with pressurization simulator can satisfy the requirement of braking and recover the braking energy effectively with the premise of ensuring braking feeling.

Key words: vehicle engineering, regenerative braking system, simulator with active pressurization function, braking feeling

中图分类号: 

  • U469.7
[1] Von Albrichsfeld C, Karner J, Von Albrichsfeld-Continental C, et al. Brake system for hybrid and electric vehicles[J]. SAE Technical Paper, 2009-01-1217.
[2] Soga M, Shimada M, Sakamoto I, et al. Development of vehicle dynamics management system for hybrid vehicles[J].ECB System for Improved Environmental and Vehicle Dynamic Performance,2002, 23(4): 459-464.
[3] Sunao Hano, Motomu Hakiai. New challenges for brake and modulation systems in hybrid electric vehicles (HEVs) and electric vehicles (EVs)[J].SAE Paper, 2011-39-7210.
[4] Oshima T, Fujiki N, Nakao S, et al. Development of an electrically driven intelligent brake system[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 399-405.
[5] Ehsani M E,Anido G,Yao M. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design[M]. 2nd Edition. New York:CRC Press, 2009.
[6] 马朝永,化北,王震,等.电子制动踏板感觉模拟器研究[J]. 电子测量技术,2011,34(7):28-33. Ma Chao-yong, Hua Bei, Wang Zhen, et al. Study of a simulator for electronic brake pedal[J]. Electronic Measurement Technology, 2011, 34(7):28-33.
[7] 金智林,郭立书,赵又群,等. 踏板感觉可控的汽车制动踏板模拟器研究[J].系统仿真学报,2010,22(12):2795-2798. Jin Zhi-lin, Guo Li-shu, Zhao You-qun, et al. Research on brake pedal emulator of vehicle with controllable pedal feeling[J]. Journal of System Simulation, 2010, 22(12):2795-2798.
[8] 李玉芳,吴炎花. 电液复合制动电动汽车制动感觉一致性及实现方法[J].中国机械工程,2012,23(4):488-492. Li Yu-fang, Wu Yan-hua. Brake feel consistency of electric vehicles with electro-hydraulic braking system and realizing method[J]. China Mechanical Engineering, 2012, 23(4):488-492.
[9] 王聪. 混合动力轿车制动踏板行程模拟器及控制策略研究[D]. 长春:吉林大学汽车工程学院,2012. Wang Cong. Study on brake pedal stroke simulator and control strategy for hybrid electric car[D]. Changchun: College of Automotive Engineering, Jilin University, 2012.
[10] 欧阳. 轿车稳定性控制系统轮缸压力控制和估算算法研究[D]. 长春:吉林大学汽车工程学院,2011. Ou Yang. Research on controlling and estimating algorithm for wheel cylinder pressure of stability control system on car[D]. Changchun: College of Automotive Engineering, Jilin University, 2011.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!