吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1391-1398.doi: 10.13229/j.cnki.jdxbgxb201605002

• • 上一篇    下一篇

复杂工况下基于最佳滑移率的汽车牵引力控制算法

刘刚1,2, 靳立强1, 陈鹏飞1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.河南工学院,河南 新乡 453002
  • 收稿日期:2015-07-14 出版日期:2016-09-20 发布日期:2016-09-20
  • 通讯作者: 靳立强(1976-),男,教授,博士生导师.研究方向:汽车底盘电子控制技术,电动汽车四轮独立驱动技术.E-mail:jinlq@jlu.edu.cn
  • 作者简介:刘刚(1981-),男,博士研究生.研究方向:汽车底盘电子控制技术.E-mail:gliu14@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(50907030); 中国博士后科学基金项目(2013M54024B).

Vehicle traction control algorithm based on optimal slip ratio under complicated road conditions

LIU Gang1,2, JIN Li-qiang1, CHEN Peng-fei1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University,Changchun 130022,China;
    2.Henan Institute of Technology, Xinxiang 453002, China
  • Received:2015-07-14 Online:2016-09-20 Published:2016-09-20

摘要: 为了提高车辆在复杂路面下的起步加速驱动能力和稳定性,提出了基于最佳滑移率的牵引力控制策略。根据当前路况下的滑转率和附着系数采用可变遗忘因子最小二乘法求出最佳滑转率。系统通过发动机转矩调节和主动制动调节两种方式协调控制,将车轮的滑转率保持在最佳滑转率附近,从而提高车辆加速性能和稳定性。在Matlab/Simulink下的仿真结果及实车冬季场地试验表明了该系统的有效性和工程应用价值。

关键词: 车辆工程, 牵引力控制系统, 驱动防滑, 主动制动, 转矩调节, 协调控制

Abstract: In order to improve vehicle starting acceleration performance and stability under complicated road conditions, a traction control algorithm based on extremum-seeking with forgetting factors Recursive Least Square (RLS) algorithm was proposed. The tire slip ratio close to the optimal slip ratio can be controlled by the coordinate strategy between the engine torque control and the active brake control. Simulation and winter road test results show that the proposed control strategy can improve the vehicle dynamics performance.

Key words: vehicle engineering, traction control system, driving slip, active braking, torque adjustment, coordinated control

中图分类号: 

  • U461
[1] van Zanten A T. Control aspect of Bosch-VDC[C]∥The 3rd International Symposium on Advanced Vehicle Control, Aachen, Germany, 1996: 573-607.
[2] 郭孔辉, 王德平. 汽车驱动防滑控制理论的初步研究[J].吉林工业大学学报,1997,27(3):1-5.
Guo Kong-hui, Wang De-ping. A preliminary theoretical study on anti-slip regulation[J].Journal of Jilin University of Technology, 1997,27(3):1-5.
[3] 史俊武,鲁统利,李小伟,等. 自动变速车辆低附着路面牵引力控制研究[J].汽车工程,2011,33(2):127-133.
Shi Jun-wu, Lu Tong-li, Li Xiao-wei, et al. A study on traction control for automatic transmission vehicle on low-adhesion road[J].Automotive Engineering, 2011,33(2):127-133.
[4] 胡建军, 王银, 秦大同,等. 基于轴间转矩分配的四轮驱动汽车牵引力控制[J].华南理工大学学报:自然科学版,2010,38(1):108-114.
Hu Jian-jun, Wang Yin, Qin Da-tong, et al. Traction control of four-wheel drive vehicles based on inter-axle torque distribution[J]. Journal of South China University of Technology(Natural Science Edition), 2010,38(1):108-114.
[5] Ise K, Fujita K, Inoue Y, et al. The “Lexus” Natural Science Edition traction control (TRAC) system[C]∥SAE Paper, 900212, 1990.
[6] Li H Z, Li L, He L, et al. PID plus fuzzy logic method for torque control in traction control system[J]. International Journal of Automotive Technology,2012,13(3):441-450.
[7] Park J H, Kim C Y. Wheel slip control in traction control system for vehicle stability[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,1999,31(4):263-278.
[8] 赵峰, 罗禹贡, 褚文博,等. 深度混合动力电动汽车牵引力控制方法[J]. 吉林大学学报:工学版,2011,41(增刊2):47-53.
Zhao Feng, Luo Yu-gong, Chu Wen-bo, et al. Traction control method for full hybrid electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2011,41(Sup.2) :47-53.
[9] Deur J, Pavković D, Burgio G, et al. A model-based traction control strategy non-reliant on wheel slip information[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2011,49(8):1245-1265.
[10] Pasillas-Lepine W, Loria A, Gerard M. Design and experimental validation of a nonlinear wheel slip control algorithm[J].Automatica,2012,48(8):1852-1859.
[11] Tanelli M, Vecchio C, Corno M, et al. Traction control for ride-by-wire sport motorcycles: a second-order sliding mode approach[J].IEEE Transactions on Industrial Electronics, 2009,56(9):3347-3356.
[12] 苑绍志,李静,李幼德.考虑路面不平的牵引力控制系统[J].吉林大学学报:工学版,2007,37(5):990-994.
Yuan Shao-zhi, Li Jing, Li You-de.Traction control system with consideration of road surface roughness[J]. Journal of Jilin University (Engineering and Technology Edition),2007,37(5):990-994.
[13] 李亮,康铭鑫,宋健,等. 汽车牵引力控制系统的变参数自适应PID控制[J].机械工程学报, 2011,47(12):92-98.
Li Liang, Kang Ming-xin, Song Jian, et al. Adaptive PID controller with variable parameters for vehicle traction control system[J]. Journal of Mechanical Engineering, 2011,47(12):92-98.
[14] 周兵,徐蒙,袁希文,等.基于滑模极值搜索算法的车辆驱动防滑控制策略[J].农业机械学报,2015,46(2):307-313.
Zhou Bing, Xu Meng, Yuan Xi-wen, et al. Acceleration slip regulation based on extremum seeking control with slide mode[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2):307-313.
[15] Borrelli F, Bemporad A, Fodor M, et al. An MPC/hybrid system approach to traction control[J]. IEEE Transactions on Control Systems Technology, 2006,14(3):541-553.
[16] 李亮, 冉旭, 李红志,等. 用于汽车牵引力控制的复杂路面轮胎-道路附着状态判断[J]. 机械工程学报, 2012,48(10):109-114.
Li Liang, Ran Xu, Li Hong-zhi, et al. Identification of tire-road adhension state on complicated road surface for traction control system[J]. Journal of Mechanical Engineering, 2012, 48(10):109-114.
[17] 武钟财.基于扩展卡尔曼滤波的路面附着系数估计算法研究[D]. 长春:吉林大学汽车工程学院,2008.
Wu Zhong-cai. Research on the algorithm of the road friction coefficient estimation based on the extended Kalman filter[D]. Changchun:College of Automotive Engineering, Jilin University,2008.
[18] 宋健,杨财,李红志,等. AYC系统基于多传感器数据融合的路面附着系数估计算法[J]. 清华大学学报:自然科学版,2009,49(5):101-104.
Song Jian,Yang Cai, Li Hong-zhi, et al. Road friction coefficient estimation algorithm based on multi-sensor data fusion for AYC system[J]. Journal of Tsinghua University(Science and Technology), 2009,49(5):101-104.
[19] Kiencke U. Realtime estimation of adhesion characteristic between tires and road[C]∥Proceeding of IFAC World Congr,Sydney,1993:15-18.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[2] 周逢道, 王金玉, 唐红忠, 张赫, 周继瑜. 近地表电磁探测多频数字驱动信号产生技术[J]. 吉林大学学报(工学版), 2013, 43(03): 682 -687 .
[3] 欧阳继红, 王振鑫, 景黎. 扩展度量关系的9-交集模型[J]. 吉林大学学报(工学版), 2013, 43(03): 695 -700 .
[4] 郭铁梁, 赵旦峰, 杨大伟. 正交频分复用水声通信系统多普勒频移快速估计[J]. 吉林大学学报(工学版), 2013, 43(03): 813 -818 .
[5] 何耀, 刘兴涛, 张陈斌, 陈宗海. 基于动力电池组内阻模型的绝缘检测算法[J]. 吉林大学学报(工学版), 2013, 43(05): 1165 -1170 .
[6] 李志斌, 金茂菁, 刘攀, 徐铖铖. 提高高速公路通行效率的可变限速控制策略[J]. 吉林大学学报(工学版), 2013, 43(05): 1204 -1209 .
[7] 袁哲, 马文星, 刘春宝, 刘浩. 重型车开式液力减速器温度场分析[J]. 吉林大学学报(工学版), 2013, 43(05): 1271 -1275 .
[8] 隋洲, 蔡中义, 兰英武, 李明哲. 连续柔性成形三维曲面件的形状控制模型[J]. 吉林大学学报(工学版), 2013, 43(05): 1302 -1306 .
[9] 杨小军, 宋青松, 马祥, 李东海. 基于多模型信息滤波器的故障容错目标跟踪[J]. 吉林大学学报(工学版), 2013, 43(05): 1381 -1385 .
[10] 伍文, 孟相如, 刘芸江, 火兴林. 基于连续时间Markov的网络可生存性建模与量化[J]. 吉林大学学报(工学版), 2013, 43(05): 1395 -1400 .