吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1426-1431.doi: 10.13229/j.cnki.jdxbgxb201605007

• • 上一篇    下一篇

侧向风及车间距对尾随行驶货车的影响

隗海林, 许香港, 李明达, 田崇河   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2015-04-22 出版日期:2016-09-20 发布日期:2016-09-20
  • 作者简介:隗海林(1969-),男,教授,博士生导师.研究方向:车辆节能技术.E-mail:khl69@163.com
  • 基金资助:
    吉林省重点科技攻关项目(20150204052GX).

Effect of lateral wind and longitudinal spacing on the two trucks in tandem

KUI Hai-lin, XU Xiang-gang, LI Ming-da, TIAN Chong-he   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2015-04-22 Online:2016-09-20 Published:2016-09-20

摘要: 车辆进行尾随行驶时其外流场会受到侧向风及车间距变化的影响,为此本文参照沃尔沃某型号货车,按照1∶1的比例建立了货车仿真模型,利用XFlow作为数值仿真软件,分别对车间距离变化范围为0~30 m及侧风来流角度变化范围为0°~20°的情况进行了数值仿真,并从汽车风阻系数变化及节油效果两个方面进行了具体分析。结果显示,在没有侧向风时后车平均节油率为22.96%,当侧向风来流角度为20°时,后车的平均节油率仅为7.41%,表明侧向风的存在大大降低了货车尾随行驶的节油效果。

关键词: 交通运输系统工程, 侧向风, 尾随行驶, 节油率, 风阻系数

Abstract: The external flow-field around trucks would be affected by the lateral wind and their longitudinal spacing change when the trucks travel in tandem. In order to analyze the influence, in reference to the Volvo truck, a simulation truck model with scale of 1: 1 was established. XFlow software was used as the numerical simulation tool. The longitudinal spacing ranged from 0 m to 30 m, and yaw angle of the wind variation range was 0 to 20 degree. The simulation results were analyzed from two aspects, drag coefficient change and fuel-saving rate. The results show that the average fuel-saving rate of the following truck is about 22.96% without lateral wind. While at yaw angle of 20 degree of the lateral wind, the fuel-saving rate is only about 7.41%. This suggests that the lateral wind has great influence on the fuel-saving of the trucks traveling in tandem.

Key words: engineering of communications and transportation system, lateral wind, trucks in tandem, fuel-saving rate, drag coefficient

中图分类号: 

  • U471
[1] 郝瀚,王贺武,欧阳明高. 中国乘用车与商用车保有量预测[J]. 清华大学学报:自然科学版,2011,51(6):868-872.
Hao Han,Wang He-wu, Ouyang Ming-gao. Predictions of China's passenger vehicle and commercial vehicle stocks[J].Journal of Tsinghua University (Natural Science Edition),2011,51(6):868-872.
[2] 任春晖. 在用车辆节能减排检测技术方案研究[D]. 西安:长安大学汽车学院,2010.
Ren Chun-hui. Research about inspection scheme of in-use vehicles on energy-saving and emission reduction[D]. Xi'an:School of Automobile, Chang'an University,2010.
[3] 褚义景,戴胜利. 汽车节能减排的若干对策研究[J].武汉理工大学学报,2010,32(4):76-79.
Chu Yi-jing,Dai Sheng-li. Research of some energy saving and emission reduction counter measures for the automobile[J]. Journal of Wuhan University of Technology,2010,32(4):76-79.
[4] 傅立敏,吴允柱. 队列行驶车辆的空气动力特性[J]. 吉林大学学报:工学版,2006,36(6):871-875.
Fu Li-min,Wu Yun-zhu. Aerodynamic characteristics of vehicle platoon[J]. Journal of Jilin University (Engineer and Technology Edition),2006,36(6):871-875.
[5] 姜波.货车尾随行驶外流场计算模拟及其燃油经济性分析[D]. 长沙:湖南大学机械与运载工程学院,2007.
Jiang Bo.Computational simulation of external flow field of trucks in tandem and research on its fuel economy[D]. Changsha:College of Mechanical and Vehicle Engineering, Hunan University,2007.
[6] Franke U,Bottiger F,Zomotor Z, et al.Truck platooning in m-ixed traffic[C]∥Proceedings of the Intelligent Vehicles'95 Symposium, Detroit,MI,1995:1-6.
[7] Al Alam A, Gattami A, Johansson K H,et al. An experimental study on the fuel reduction potential of heavy duty vehicle platooning[C]∥2010 13th International IEEE Annual Conference on Intelligent Transportation Systems,Madeira Island,Portugal,2010:306-311.
[8] 李雨菲. 日本公开展示卡车无人驾驶列队[J]. 专用汽车,2013(3):59.
Li Yu-fei. Japan publicly display trucks unmanned platoon[J]. Special Purpose Vehicle, 2013(3):59.
[9] 张英朝. 汽车空气动力学数值模拟技术[M]. 北京:北京大学出版社,2011:100.
[10] Hammache M,Michaelian M,Browand F.Aerod-ynamic forces on truck models including two trucks -in tandem[C]∥SAE Paper, 2002-01-0530.
[11] 余志生. 汽车理论[M]. 4版. 北京:机械工业出版社,2006.
[12] Gillespie T D. Fundamentals of Vehicle Dynamics[M]. Warrendale PA:SAE Inc,1992.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!