吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 756-764.doi: 10.13229/j.cnki.jdxbgxb201703010

• • 上一篇    下一篇

城市轨道交通与地面公交竞合关系演化机制

赵学彧, 杨家其, 彭亚美   

  1. 武汉理工大学 交通学院,武汉430063
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:赵学彧(1986-),男,博士研究生.研究方向:城市轨道交通.E-mail:591949181@qq.com
  • 基金资助:
    国家自然科学基金项目(51279153)

Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus

ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei   

  1. School of Transportation, Wuhan University of Technology, Wuhan 430063, China
  • Online:2017-05-20 Published:2017-05-20

摘要: 为了揭示城市轨道交通与地面公交之间的竞争合作的演化特点,构建了城市交通客流自组织系统的演化模型。在此基础上,构建了城市轨道交通与地面公交之间的竞合机制模型,分析了两种方式共存时产生的竞合效应,以及在各竞合时期的关系演化机制。最后,以武汉市为例,分析了两种方式在不同时期的竞合关系演化态势,得到各时期下城市公共交通竞合效应发展特征和相应策略。本文研究成果对城市轨道网络与地面公交的规划和发展有显著的实践意义。

关键词: 交通运输系统工程, 城市轨道交通, 自组织演化, 竞合效应, 竞合关系, 演化机制

Abstract: To reveal the competition and cooperation evolution mechanism between urban rail transit and traditional bus, the evolution model of the self-organization systems in urban passenger transport flow is constructed. On this basis, the competition model consisting of urban rail and traditional bus is established with the coexistence of both competitive effect and cooperative effect. Finally, as a case study, the evolution mechanism in different stages in Wuhan city is analyzed. The development feature of the competitive and cooperative effects of urban public transit at each stage is obtained and corresponding strategy is illustrated. This study provides a reference for the planning and development of urban rail transit and public bus networks.

Key words: engineering of communication and transportation system, urban rail transit, self-organization evolution, competitive and cooperative effect, competitive and cooperative relationship, evolution mechanism

中图分类号: 

  • U121
[1] Tabuchi T. Bottleneck congestion and modal split[J]. Journal of Urban Economics,1993,34(8):414-431.
[2] Hollander Y, Prashker J N. The applicability of non-cooperative game theory in transport analysis[J]. Transportation,2006,33(5):481-496.
[3] 刘华胜. 城市轨道交通与地面公交协调优化关键方法研究[D]. 长春:吉林大学交通学院,2015.
Liu Hua-sheng. Study on key methods of coordinate optimization between rail and bus[D].Changchun: College of Transportation,Jilin University,2015.
[4] 李橘云. 基于轨道交通的常规公交线路优化对策研究[J]. 都市快轨交通,2009(3):10-13.
Li Ju-yun. Research on the measures for optimizing bus lines based on rail transit[J]. Urban Rapid Rail Transit,2009(3):10-13.
[5] 唐文彬,张飞涟,李晶晶,等. 城市轨道交通与常规公交的合作博弈定价模型[J]. 科技进步与对策,2012,29(18):69-71.
Tang Wen-bin, Zhang Fei-lian, Li Jing-jing, et al. The cooperation game pricing model for urban rail and bus[J]. Science and Technology Progress and Policy,2012,29(18):69-71.
[6] 黄建中,余波. 接驳城市轨道交通的社区公交研究——以上海市为例[J]. 城市规划学刊,2014(3):77-84.
Huang Jian-zhong, Yu Bo. A research on integrating community bus with urban railway system: the case study of shanghai[J]. Urban Planning Forum,2014(3):77-84.
[7] 孙杨,孙小年,孔庆峰,等. 轨道交通新线投入运营下常规公交网络优化调整方法研究[J]. 铁道学报,2014,36(3):1-8.
Sun Yang,Sun Xiao-nian,Kong Qing-feng, et al. Methodology of bus network optimization and adjustment under operation of new urban rail transit line[J]. Journal of the China Railway Society,2014,36(3):1-8.
[8] 马天山,曹玮,乔新宇. 城市轨道交通与接运公交换乘优化模型[J]. 长安大学学报:自然科学版,2013,33(4):80-85.
Ma Tian-shan, Cao Wei, Qiao Xin-yu. Optimization model of shuttle between urban-rail and feeder-bus[J]. Journal of Chang'an University (Natural Science Edition),2013,33(4):80-85.
[9] 张杰林,李铁柱. 基于竞争模型的轨道交通与地面公交共线分析[J]. 交通信息与安全,2014,32(4):108-112.
Zhang Jie-lin, Li Tie-zhu. Urban rail transit and bus collinear analysis based on competition model[J]. Journal of Transport Information and Safety,2014,32(4):108-112.
[10] Mohaymany A S, Gholami A. Multimodal feeder network design problem: ant colony optimization approach[J]. Journal of Transportation Engineering,2010,136(4):323-331.
[11] Song Li-jing, Chen Feng, Xian Kai,et al. Research on a scientific approach for bus and metro networks integration[C]∥8th International Conference on Traffic and Transportation Studies, Changsha, China, 2012:740-747.
[12] Nanduri V, Kazemzadeh N. Economic impact assessment and operational decision making in emission and transmission constrained electricity markets[J]. Applied Energy,2011,96:212-221.
[13] Sivakumaran K, Li Y W, Cassidy M J, et al. Cost-saving properties of schedule coordination in a simple trunk-and-feeder transit system[J]. Transportation Research Part A,2011,46(1):131-139.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!