吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1032-1039.doi: 10.13229/j.cnki.jdxbgxb201704004

• 论文 • 上一篇    下一篇

动力电池组扁管束液流热管理增效

张天时1, 2, 宋东鉴2, 高青1, 2, 王国华1, 2, 周萌2, 闫玉英3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 汽车工程学院, 长春130022;
    3.诺丁汉大学 工程系,诺丁汉 NG72RD,英国
  • 收稿日期:2016-05-26 出版日期:2017-07-20 发布日期:2017-07-20
  • 通讯作者: 高青(1961-),男,教授,博士生导师.研究方向:汽车热管理及能源高效利用.E-mail:gqing@jlu.edu.cn
  • 作者简介:张天时(1985-),男,博士研究生.研究方向:电动汽车热管理.E-mail:zhangtianshi@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51376079).

Promotive effect on thermal management of power battery pack with liquid flow and flat tube bank

ZHANG Tian-shi1, 2, SONG Dong-jian2, GAO Qing1, 2, WANG Guo-hua1, 2, ZHOU Meng2, YAN Yu-ying3   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China;
    3.Faculty of Engineering, University of Nottingham, Nottingham NG72RD, UK
  • Received:2016-05-26 Online:2017-07-20 Published:2017-07-20

摘要: 针对电动汽车动力电池组热管理需求,设计了一种扁管束叠层液流换热结构,并通过CFD计算对比分析了添加高导热石墨膜前、后电池组冷却过程中的温变性、温度一致性和温均性等。仿真计算结果表明:未添加石墨前电池片间扁管束和单片电池表面扁管间换热一致性较好,但相同电池片上不同特征点间温度差异较大;此外,电池表面铺垫柔性石墨后电池温降速率明显增大,同时单片电池温均性得到显著提升。这表明本文设计的管束叠层液流换热结构能够保障电池组较佳的热管理效果,与整板式液体换热电池包相比进一步实现了轻量化。

关键词: 车辆工程, 电池热管理, 管束叠层, 柔性石墨, 温均性

Abstract: To explore Battery Thermal Management (BTM) for Electric Vehicle (EV), a heat exchanger of battery pack is designed using aluminum flat tube bank and flexible graphite. The investigation focuses on the thermal characteristics of the battery pack in the BTM process, such as the temperature variation and temperature uniformity of the battery pack and cell surface etc. The computation results show that, without flexible graphite, the heat exchange of flat tube banks in battery pack and flat tubes on cell surface present better consistency, but the temperature difference is larger for different measure points in the same battery cell. In addition, the battery cooling speed rises obviously, and the temperature uniformity of cell surface is significantly improved. The results indicate that the battery pack obtains well cooling effect, and it also realizes further lightweight compared with full-contact liquid cooling plate.

Key words: vehicle engineering, battery thermal management, laminated flat tubes, flexible graphite, temperature uniformity

中图分类号: 

  • U469.72
[1] Kizilel R, Sabbah R, Selman J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009,194(2):1105-1112.
[2] Noboru Sato, Kazuhiko Yagi. Thermal behavior analysis of nickel metal hybride batteries vehicles[J]. SAE Review, 2000, 21:208-209.
[3] Kawamura T, Kimura A, Egashira M, et al. Thermal stability of carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2): 260-264.
[4] 赵迎生, 赵又群. 城市电动汽车铅酸蓄电池温度的计算分析[J]. 应用基础与工程科学学报, 2011,19(1):173-178.
Zhao Ying-sheng, Zhao You-qun. Calculation analysis of lead acid battery temperature of urban electric vehicle[J]. Journal of Basic Science and Engineering, 2011,19(1):173-178.
[5] Al-Hallaj S, Selman J R. A novel thermal management system for EV batteries using phase change material (PCM)[J]. Journal of the Electrochemical Society, 2000,147:3231-3236.
[6] Zhang Tian-shi, Gao Chun, Gao Qing, et al. Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Applied Thermal Engineering, 2015,75: 1-12.
[7] Jim Motavalli. The next big challenge for electric cars in cold weather[N]. MoneyWatch Comment, CBS Interactive, 2011.2.16
[8] Pendergast D R, De Mauro E P, Fletcher M, et al. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011,196(2):793-800.
[9] Jarrett Anthony, Kim Il Yong. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011,196(23) 10359-10368.
[10] Weber D R, Brisbane R M. Cooling plate for lithium-ion battery pack[P]. US Patent:0162820A1,2011.
[11] Lev Leonid C, Kondratyev Nikolay. Cooling system for automotive battery[P]. US Patent:0209856A1,2013.
[12] Bernadi D,Pawlikowski E,Newman J. A general energy balance for battery systems[J]. Electrochemical Society,1985,132(1):5-12.
[13] 许超. 混合动力客车电池包散热系统研究[D]. 上海:上海交通大学车辆工程系,2010.
Xu Chao. Research of cooling system of battery pack on hybrid electric bus[D]. Shanghai:Department of Vehicle Engineering,Shanghai Jiaotong University,2010.
[14] Noboru Sato. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2001,99(1):70-77.
[15] Loh C Y. Computation of low speed cavity noise[R]. Beavercreek: NASA Center for Aerospace Information,2004.
[16] 王东,李昌盛,杨志刚. 锂离子动力电池包CFD仿真[J]. 计算机辅助工程,2012,21(6):1-4.
Wang Dong,Li Chang-sheng,Yang Zhi-gang. CFD simulation on lithium-ion power battery pack[J]. Computer Aided Engineering, 2012,21(6):1-4.
[17] Park C W, Jaura A K. Dynamic thermal model of li-ion battery for predictive behavior in hybrid and fuel cell vehicles[C]//SAE Paper, 2003-01-2286.
[18] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011,196(13): 5685-5696.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!