吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 998-1007.doi: 10.13229/j.cnki.jdxbgxb20170507
夏利红1, 邓兆祥1,2
XIA Li-hong1, DENG Zhao-xiang1,2
摘要: 以行星齿轮滚珠丝杆驱动式电子机械制动系统为研究对象,考虑动态阻力载荷、齿轮转动惯量及传动比离散性的影响,提出一种多约束条件下的两级传动机电系统的多目标最优匹配方法。首先,基于执行器的动力学模型和性能目标,针对紧急制动和高附着路面制动防抱死两种典型工况提出相应的负载特征和运动规律。接着,以电机和滚珠丝杆产品数据库为输入,以执行器尺寸限制、电机运行范围及滚珠丝杆性能需求为约束条件,选出能够驱动负载的所有滚珠丝杆和电机。然后,以太阳轮尺寸最小为目标,以齿轮齿面接触强度和齿根弯曲强度为约束条件,获取能够驱动负载的行星齿轮传动比和太阳轮齿数,获得数据库中满足条件的所有匹配方案。最终,获得同时考虑系统质量、启动加速度、制动间隙消除时间及电机等效输出力矩等目标的执行器多目标最优匹配方案。
中图分类号:
[1] Ahn J K, Jung K H, Kim D H, et al.Analysis of a regenerative braking system for hybrid electric vehicle using an electro-mechanical brake[J]. International Journal of Automotive Technology, 2009, 10(2):229-234. [2] Line C.Modelling and control of an automotive electromechanical brake[D]. Melbourne: The University of Melbourne, 2007. [3] Schwarz R, Isermann R, Böhm J, et al. Clamping force estimation for a brake-by-wire actuator[C]∥SAE Paper,1999-01-0482. [4] Kwak J, Yao B, Bajaj A.Analytical model development and model reduction for electromechanical brake system[C]∥ASME Internetional Mechanical Engineering Congress and Exposition, Anaheim, United States, 2004. [5] Lee C F, Manzie C. High-bandwidth clamp force control for an electromechanical brake[C]∥SAE Paper, 2012-01-1799. [6] 李静,张建,王梦春,等. 电子机械制动执行器数学建模与精细控制[J]. 吉林大学学报:工学版, 2012,42(1):1-6. Li Jing, Zhang Jian, Wang Meng-chun, et al.Electromechanical brake actuator modeling and actuator control algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(1):1-6. [7] Hilzinger J, Schumann F, Blosch G, et al.Electromechanical wheel brake device[P]. United States Patent: US 6806602 B2,2014-10-19. [8] Schwarz R.Electromechanically actuated disc brake[P]. United States Patent: US 6315092 B1, 2001. [9] Osterday C A, Fiste M M, Hill G J. Electrically actuated disc brake assembly[P]. United States Patent: US 6315092 B1,2001-11-13. [10] Wang N, Kaganov A, Code S, et al. Actuating mechanism and brake assembly[P]. PBR Australia Pty: WO2005/124180 A1, 2005-12-29. [11] 杨坤. 轻型汽车电子机械制动及稳定性控制系统研究[D].长春:吉林大学汽车工程学院,2009. Yang Kun.Research of electromechanical brake and vehicle stability control system for light vehicle[D]. Changchun: College of Automotive Engineering,Jilin University, 2009. [12] 赵一博. 电子机械制动系统执行机构的研究与开发[D].北京:清华大学机械工程学院,2010. Zhao Yi-bo.Research and development of electromechanical brake system actuator[D]. Beijing: College of Mechanical Engineering,Tsinghua University, 2010. [13] Pasch K A, Seering W P.On the drive systems for high-performance machines[J].Trans ASME,1984,106:102-108. [14] Cusimano G.A procedure for a suitable selection of laws of motion and electric drive systems under inertial loads[J]. Mech Mach Theory,2003,38:519-533. [15] Cusimano G.Generalization of a method for the selection of drive systems and transmissions under dynamic loads[J]. Mechanism and Machine Theory, 2005,40(5): 530-558. [16] Giberti H, Cinquemani S, Legnani G.Effects of transmission mechanical characteristics on the choice of a motor-reducer[J]. Mechatronics,2010,20:604-610. [17] Roos F, Johansson H, Wikander J.Optimal selection of motor and gearhead in mechatronic application[J]. Mechatronics,2006,16:63-72. [18] Kim M S, Chung S C.Integrated design methodology of a ball-screw driven servomechanisms with discrete controllers. Part I: modelling and performance analysis[J]. Mechatronics,2006,16:491-502. [19] Kim M S, Chung S C.Integrated design methodology of a ball-screw driven servomechanisms with discrete controllers. Part II: formulation and synthesis of the integrated design[J]. Mechatronics,2006,16:503-512. [20] Caracciolo R, Richiedei. D.Optimal design of ball-screw driven servomechanisms through an integrated mechatronic approach[J]. Mechatronics,2014,24:819-832. [21] Dumitru D, Strajescu E, Tache C.Theoretical considerations concerning the determination of value for the critical speed of the ball-screws from numerical axes structure[J]. RECENT,2009,10(27):255-258. [22] 饶振纲. 行星齿轮传动设计[M].北京:化学工业出版社,2003. [23] 龙振宇. 机械设计[M].北京:机械工业出版社,2002. [24] 南京工艺装备制造有限公司.产品数据库[DB/OL].[2017-07-26].http:∥www.njyigong.cn/products.asp?parentid=1 |
[1] | 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635. |
[2] | 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644. |
[3] | 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652. |
[4] | 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660. |
[5] | 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668. |
[6] | 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312. |
[7] | 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323. |
[8] | 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330. |
[9] | 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338. |
[10] | 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348. |
[11] | 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359. |
[12] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[13] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[14] | 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983. |
[15] | 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989. |
|