吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 549-556.doi: 10.13229/j.cnki.jdxbgxb20191088

• 交通运输工程·土木工程 • 上一篇    

考虑垂向⁃侧向运动的半挂列车动力学建模及分析

李洪雪(),李世武,孙文财(),王琳虹,杨志发   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2019-11-27 出版日期:2021-03-01 发布日期:2021-02-09
  • 通讯作者: 孙文财 E-mail:lhx18@mails.jlu.edu.cn;swcai@163.com
  • 作者简介:李洪雪(1993-),女,博士研究生.研究方向:车辆系统动力学的仿真与控制.E-mail:lhx18@mails.jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0804808);吉林省科技发展计划项目(20180101074JC);吉林省教育厅“十三五”科学技术项目(JJKH20190152KJ);吉林省科技发展计划项目优秀青年人才基金项目(20180520180JH);吉林省教育厅项目(JJKH20180149KJ)

Dynamic modeling and analysis of semi⁃trailers considering ride and lateral motions

Hong-xue LI(),Shi-wu LI,Wen-cai SUN(),Lin-hong WANG,Zhi-fa YANG   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2019-11-27 Online:2021-03-01 Published:2021-02-09
  • Contact: Wen-cai SUN E-mail:lhx18@mails.jlu.edu.cn;swcai@163.com

摘要:

铰接车辆的动力学模型对于理解车辆系统内在的复杂关系,预估车辆性能的变化以及完善新车型的开发具有重要意义。本文建立了11自由度垂向和侧向耦合的3轴半挂汽车列车动力学模型。通过与整车的平顺性模型对比,验证所建模型的有效性。并且进一步研究了道路的不平度激励、车辆行驶速度、挂车悬架刚度、挂车轮胎刚度参数变化引起的车身跳动和侧倾运动的规律。研究结果可为铰接车辆的设计控制和参数匹配提供参考价值。

关键词: 动力学模型, 半挂列车, 控制, 参数匹配

Abstract:

The dynamic model of articulated vehicle is of great significance for understanding the complex relationship within the vehicle system, predicting the change of vehicle performance and improving the development of new vehicle models. A dynamic model of three-axis semi-trailer with eleven degrees of freedom including vertical and lateral motions is presented. Compared with the vertical ride model, the validity of the coupled model is verified. The wheel bounce and body rolling motion are studied with the changes of road uneven excitation, vehicle velocity, suspension stiffness and tire stiffness of the semitrailer. The research results can provide reference value for the design control and parameter matching of articulated vehicles.

Key words: dynamic model, semi-trailer, control, parameter matching

中图分类号: 

  • U469.5

图1

3轴牵引-半挂车耦合模型"

图2

A、C和E车轮的路面位移激励"

图3

耦合模型与平顺性模型比较"

图4

耦合模型的侧倾角"

图5

不同粗糙路面的悬架性能方均根值"

表1

A级路面悬架性能指标方均根值的比较"

车速u/ (m·s-1)牵引车垂向加速度方均根值BA1-R.M.S/(m·s-2)挂车侧倾角方均根值φ2-R.M.S/(o)
50.00520.2983
100.00740.4218
150.00910.5167
200.01050.5966

表2

B级路面悬架性能指标方均根值的比较"

车速u/ (m·s-1)牵引车垂向加速度方均根值BA1-R.M.S/(m·s-2)挂车侧倾角方均根值φ2-R.M.S/(o)
50.01050.5966
100.01480.8437
150.01811.0333
200.02091.1932

表3

C级路面悬架性能指标方均根值的比较"

车速u/ (m·s-1)牵引车垂向加速度方均根值BA1-R.M.S/(m·s-2)挂车侧倾角方均根值φ2-R.M.S/(o)
50.02091.1932
100.02961.6874
150.03632.0667
200.04192.3863

图6

不同悬架刚度下车辆的动态响应"

表4

悬架刚度对车辆特性的影响"

挂车悬架刚度kE/(N·m-1)牵引车垂向加速度方均根值BA1-R.M.S/(m·s-2)挂车最大侧倾角φ2max/(o)
3.40.024 53.586 9
340.024 53.584 8
3400.024 53.564 2
3 4000.024 53.391 3
34 0000.024 53.049 8
340 0000.024 43.439 9
3 400 0000.024 63.523 7

图7

不同轮胎刚度下的车辆的动态响应"

表5

轮胎刚度对车辆特性的影响"

挂车悬架刚度kE/(N·m-1)牵引车垂向加速度方均根值BA1-R.M.S/(m·s-2)挂车最大侧倾角φ2max/(o)
3.40.013 02 414.0
340.013 02 402.8
3400.013 02 294.1
3 4000.015 41 474.8
34 0000.023 0295.9
340 0000.024 429.9
3 400 0000.024 53.0
1 Mendes A D S, Fleury A D T, Ackermann M. Assessing the influence of the road-tire friction coefficient on the yaw and roll stability of articulated vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(12): 2987-2999.
2 Sun W, Li Y, Huang J. Efficiency improvement of vehicle active suspension based on multi-objective integrated optimization[J]. Journal of Vibration and Control, 2017, 23(4): 539-554.
3 王德军, 杜婉彤, 王晰聪. 基于模型分解的车辆侧倾控制器设计[J]. 吉林大学学报: 信息科学版, 2016, 34(2): 81-87.
Wang De-jun, Du Wan-tong, Wang Xin-cong. Vehicle roll controller design based on model decomposition[J]. Journal of Jinlin University (Information Science Edition), 2016, 34(2): 81-87.
4 Islam M M, He Y, Zhu S L. A comparative study of multi-trailer articulated heavy-vehicle models[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(9): 1200-1228.
5 Li H X, Li S W, Sun W C, et al. Vibration and handling stability analysis of articulated vehicle with hydraulically interconnected suspension[J]. Journal of Vibration and Control, 2019, 25(13): 1899-1913.
6 Biglarbegian M, Zu J W. Tractor-semitrailer model for vehicles carrying liquids[J]. Vehicle System Dynamics, 2016, 44(11): 871-885.
7 刘献栋, 吕海波, 张红卫, 等. 半挂汽车列车结构参数及模型处理方式对平顺性的影响[J]. 重庆交通大学学报: 自然科学版, 2015, 34(5): 139-144.
Liu Xian-dong, Lv Hai-bo, Zhang Hong-wei, et al. Effect of structure parameters and model processing method of tractor-semitrailer combination on the ride performance[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(5): 139-144.
8 李韶华, 杨绍普, 陈立群. 三向耦合非线性重型汽车建模及动力学分析[J]. 振动与冲击, 2014, 33(22): 131-138.
Li Shao-hua, Yang Shao-pu, Chen Li-qun. Modeling and dynamic analysis of a non-linear heavy vehicle with three-directional coupled motions[J]. Journal of Vibration and Shock, 2014, 33(22): 131-138.
9 宋康, 陈潇凯, 林逸. 汽车行驶动力学性能的多目标优化[J]. 吉林大学学报: 工学版, 2015, 45(2): 352-357.
Song Kang, Chen Xiao-kai, Lin Yi. Multi-objective optimization of vehicle ride dynamic behaviors[J]. Journal of Jinlin University (Engineering and Technology Edition), 2015, 45(2): 352-357.
10 徐程, 曲昭伟, 金盛. 考虑侧向偏移的车辆跟驰行为建模及仿真[J]. 吉林大学学报: 工学版, 2014, 44(6): 1609-1615.
Xu Cheng, Qu Zhao-wei, Jin Sheng. Modeling and simulation of car following behavior considering lateral separation[J]. Journal of Jinlin University (Engineering and Technology Edition), 2014, 44(6): 1609-1615.
11 Li X, Wang G, Yao Z. Dynamic model and validation of an articulated steering wheel loader on slopes and over obstacles[J]. Vehicle System Dynamics, 2013, 51(9): 1305-1323.
12 Zhang Y, Khajepour A, Huang Y. Multi-axle/articulated bus dynamics modeling: a reconfigurable approach[J]. Vehicle System Dynamics, 2018, 56(9): 1315-1343.
13 Aoki A, Marumo Y, Kageyama I. Effects of multiple axles on the lateral dynamics of multi-articulated vehicles[J]. Vehicle System Dynamics, 2013, 51(3): 338-359.
14 Pan H, Sun W, Jing X. Adaptive tracking control for active suspension systems with non-ideal actuators[J]. Journal of Vibration and Control, 2017, 399: 2-20.
15 喻凡. 汽车系统动力学[M]. 北京: 机械工业出版社, 2016.
[1] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397-405.
[2] 翟富刚,尹燕斌,李超,田纬,乔子石. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报(工学版), 2021, 51(2): 442-449.
[3] 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548.
[4] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[5] 初亮,董力嘉,许楠,张立峰,贾一帆,杨志华. 基于开绕组电机的增程式电动车动力系统构型及其功率分配[J]. 吉林大学学报(工学版), 2021, 51(1): 72-82.
[6] 曾小华,李晓建,杜劭峰,马涛,王振伟,宋大凤. 多轮混合动力驱动无人驾驶框架车整车控制器开发[J]. 吉林大学学报(工学版), 2021, 51(1): 63-71.
[7] 何德峰,罗捷,舒晓翔. 自主网联车辆时滞反馈预测巡航控制[J]. 吉林大学学报(工学版), 2021, 51(1): 349-357.
[8] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[9] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
[10] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[11] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[12] 陈海燕. 分布式通信网络多频段信号源远程切换控制算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1886-1893.
[13] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[14] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[15] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!