吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2216-2224.doi: 10.13229/j.cnki.jdxbgxb20210416

• 计算机科学与技术 • 上一篇    

基于群智能的图书馆人脸识别系统关键技术

汤松梅()   

  1. 长春大学 图书馆,长春 130022
  • 收稿日期:2021-05-18 出版日期:2021-11-01 发布日期:2021-11-15
  • 作者简介:汤松梅(1971-),女,馆员,研究方向:图书馆资源管理与文化建设tangsm71@126.com
  • 基金资助:
    吉林省省级科技创新专项资金项目(20190302026GX);吉林省自然科学基金项目(20200201037JC)

Key technology of face recognition system based on swarm intelligence in library

Song-mei TANG()   

  1. Library,Changchun University,Changchun 130022,China
  • Received:2021-05-18 Online:2021-11-01 Published:2021-11-15

摘要:

为了促进图书馆向智慧新形态的转变,本文针对人脸识别中的图像分割技术,首先提出了一种混合连续蚁群优化算法(BACO),并进一步提出了一种基于BACO的多阈值图像分割模型用于面部图像分割。为了验证基于BACO的多阈值图像分割模型的性能,将其与其他9种同类方法进行了比较实验。针对获得的实验结果,首先使用PSNR和FSIM对分割结果进行了评估,然后采用Wilcoxon符号秩检验对评估进行了进一步的分析。所得到的结果清楚地证实了基于BACO的多阈值图像分割模型获得了最优的表现。因此,提出的多阈值图像分割模型可为下一步的面部识别乃至智慧图书馆的建设奠定基础。

关键词: 智慧图书馆, 图像分割, 群智能优化, 人脸识别

Abstract:

In order to facilitate the transformation of libraries to new forms of smart libraries, face recognition plays a very important role in it. Image segmentation, on the other hand, is one of the most fundamental studies in face recognition. In this study, we first propose a hybrid successive ant colony optimization algorithm (BACO), and further propose a BACO-based multi-threshold image segmentation model for facial image segmentation. In order to verify the performance of the BACO-based multi-threshold image segmentation model, it is compared with nine other similar methods for experiments. For the obtained experimental results, the segmentation results were first evaluated using PSNR and FSIM, and the evaluation was further analyzed using Wilcoxon signed-rank test. The obtained results clearly confirm that the BACO-based multi-threshold image segmentation model obtains the optimal performance. Thus, the proposed multi-threshold image segmentation model lays a solid foundation for the next step of facial recognition and even smart library construction.

Key words: smart library, image segmentation, swarm intelligence optimization, face recognition

中图分类号: 

  • TP391

图1

有k个解的档案袋"

图2

二维直方图和其对应的平面图"

图3

用于分割的图像"

表1

两个评价指标的定义和说明"

名称峰值信噪比(PSNR)特征相似度指数(FSIM)
公式PSNR=20?log10?255RMSEFSIM=IΩSLXPCmXIΩPCmX
描述评估分割后的图像与原始图像之间的差异。定义质量分数,它反映了一个地方结构的重要性。

表2

Wilcoxon符号秩检验对PSNR评估的分析结果"

阈值水平~BACOSMAACORWOACSABCSCAMVOHHO
+/-/=~1/1/20/0/41/0/33/0/13/0/12/0/21/0/32/1/1
3排序均值23.7536.57.256.25736.25
排名142795825
+/-/=~1/0/30/0/43/0/12/0/22/0/24/0/01/0/32/0/2
4排序均值253.2565.548.537.75
排名153764928
+/-/=~1/0/30/0/42/0/22/0/23/0/14/0/01/0/33/0/1
5排序均值2.254.5374.753.758.7538
排名152764928
+/-/=~2/0/20/0/41/0/33/0/10/0/44/0/03/0/14/0/0
13排序均值242.255.255.252.7596.58
排名142553978
+/-/=~3/0/10/0/43/0/13/0/12/0/24/0/04/0/04/0/0
14排序均值1.254.252.554.753.5977.75
排名142653978
+/-/=~1/0/30/0/42/0/22/0/20/0/44/0/02/0/24/0/0
15排序均值1.753.253.254.55.53.2596.58
排名122562978

表3

Wilcoxon符号秩检验对FSIM评估的分析结果"

阈值水平~BACOSMAACORWOACSABCSCAMVOHHO
+/-/=~1/0/30/0/42/0/22/0/22/0/24/0/01/0/32/0/2
3排序均值1.7533675.2593.256.75
排名122685947
+/-/=~1/0/30/0/43/0/13/0/12/0/24/0/02/0/22/0/2
4排序均值15.252.57.55.754.7593.55.75
排名152864936
+/-/=~1/1/20/0/43/0/13/0/12/0/24/0/01/0/32/0/2
5排序均值2.532.756.574.7593.256.25
排名132785946
+/-/=~1/0/31/0/32/0/22/0/21/0/34/0/04/0/04/0/0
13排序均值1.254.252.55.255.752.7596.57.75
排名142563978
+/-/=~3/0/10/0/42/0/23/0/12/0/24/0/04/0/04/0/0
14排序均值1.54.252.25553.25977.75
排名142553978
+/-/=~2/0/20/0/43/0/14/0/01/0/34/0/04/0/04/0/0
15排序均值1.753.253.254.55.53.2596.58
排名122562978

图4

在15阈值水平时每一种方法获得的图3(b)的灰度分割结果和彩色映射结果"

1 胡静,陶洋.基于RPCA的群稀疏表示人脸识别方法[J].重庆邮电大学学报:自然科学版,2020,32(3):459-468.
Hu Jing, Tao Yang. Group sparse representation face recognition method based on RPCA[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(3):459-468.
2 Zhang Z C, Yin J Q. Bee foraging algorithm based multi-level thresholding for image segmentation[J].Ieee Access, 2020, 8: 16269-16280.
3 Abd Elaziz M. An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of COVID-19 CT image segmentation[J]. IEEE Access, 2020,8: 125306-125330.
4 Yue X F, Zhang H B. Improved hybrid bat algorithm with invasive weed and its application in image segmentation[J]. Arabian Journal for Science and Engineering, 2019,44(11):9221-9234.
5 Chakraborty S.Modified cuckoo search algorithm in microscopic image segmentation of hippocampus[J]. Microscopy Research and Technique, 2017, 80(10):1051-1072.
6 Di S. Image superpixel segmentation based on hierarchical multi-level LI-SLIC[J]. Optics & Laser Technology, 2021,135:106703.
7 Yue X, Zhang H. Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation[J]. Applied Soft Computing, 2020, 90: 106157.
8 Xing Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation[J]. Knowledge-Based Systems, 2020, 194: 105570.
9 Wu B. An ameliorated teaching——learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur's entropy and Otsu's between class variance[J]. Information Sciences, 2020, 533: 72-107.
10 Upadhyay P, Chhabra J K. Kapur's entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2020,97: 105522.
11 Srikanth R, Bikshalu K. Multilevel thresholding image segmentation based on energy curve with harmony search algorithm[J]. Ain Shams Engineering Journal, 2021,12(1):1-20.
12 Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE computational intelligence magazine, 2006, 1(4): 28-39.
13 Socha K, Dorigo M. Ant colony optimization for continuous domains[J]. European Journal of Operational Research, 2008, 185(3): 1155-1173.
14 Arbeláez P. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916.
15 Zhang L. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(8): 2378-2386.
16 García S.Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power[J]. Information Sciences, 2010, 180(10): 2044-2064.
17 Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied mathematics and computation, 2009, 214(1): 108-132.
18 杨梦,雷博,赵强,等.基于改进粒子群的二维模糊散度多阈值图像分割[J].计算机应用与软件,2020,37(9):133-138.
Yang Meng, Lei Bo, Zhao Qiang, et al. Two-dimensional fuzzy divergence multi-thresholdimage segmentation based on improved pso[J]. Computer Applications and Software, 2020,37(9):133-138.
19 Li S, Chen H, Wang M, et al. Slime mould algorithm: A new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323.
20 Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
21 Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-based Systems, 2016, 96:120-133.
22 Mirjalili S, Mirjalili S M, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing & Applications, 2016, 27(2): 495-513.
23 Heidari A A.Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97:849-872.
24 Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44: 800-801.
25 朱良宽,刘亮,东旭,等. 基于改进三维Otsu法的森林冠层图像分割[J]. 计算机工程, 2019, 45(1): 253-258, 263.
Zhu Liang-kuan, Liu Liang,Dong Xu,et al. Forest Canopy image segmentation based on improved 3D Otsu method[J]. Computer Engineering, 2019, 45(1): 253-258, 263.
26 施新岚,黄俊,黄洋,等.基于Gabor纹理增强的人脸活体检测算法[J].重庆邮电大学学报:自然科学版,2020,32(6):1023-1030.
Shi Xin-lan, Huang Jun, Huang Yang, et al. Face liveness detection using Gabor texture enhancement[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(6):1023-1030.
27 董本志,陈迪,景维鹏. 基于对称性区域过滤的显著性区域检测方法[J]. 计算机工程, 2019, 45(5): 216-221.
Dong Ben-zhi,Chen Di,Jing Wei-peng. Salient region detection method based on symmetric region filtering[J]. Computer Engineering, 2019, 45(5): 216-221.
[1] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[2] 吴禄慎,程伟,胡赟. 应用改进布谷鸟算法优化多阈值图像分割[J]. 吉林大学学报(工学版), 2021, 51(1): 358-369.
[3] 郜峰利,陶敏,李雪妍,何昕,杨帆,王卓,宋俊峰,佟丹. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报(工学版), 2020, 50(2): 678-684.
[4] 周柚,杨森,李大琳,吴春国,王岩,王康平. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报(工学版), 2019, 49(6): 2051-2057.
[5] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[6] 肖明尧, 李雄飞, 张小利, 张刘. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[7] 刘仲民, 李战明, 李博皓, 胡文瑾. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[8] 赵夫群, 周明全, 耿国华. 基于GA-Otsu法的图像阈值分割及定量识别[J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[9] 肖明尧, 李雄飞. 基于高斯分解的多尺度3D Otsu阈值分割算法[J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[10] 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[11] 聂海涛, 龙科慧, 马军, 张雷, 马喜强. 基于快速SIFT算法和模糊控制的人脸识别[J]. 吉林大学学报(工学版), 2016, 46(2): 549-555.
[12] 申铉京, 张赫, 陈海鹏, 王玉. 快速递归多阈值分割算法[J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[13] 郑欣, 彭真明, 邢艳. 基于活跃度的图像分割算法性能评价新方法[J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[14] 李一兵, 杨鹏, 叶方, 刘丹丹. 基于交互势函数和均场参数估计的分层MRF模型的纹理图像分割[J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
[15] 王玉, 申铉京, 陈海鹏, 谭颖. 多角度特征融合的视频人脸纹理表示及识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1954-1960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!