吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1881-1888.doi: 10.13229/j.cnki.jdxbgxb20210159

• 计算机科学与技术 • 上一篇    

基于双手键盘的虚拟现实文本输入

秦贵和(),黄俊锋,孙铭会()   

  1. 吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2021-03-01 出版日期:2022-08-01 发布日期:2022-08-12
  • 通讯作者: 孙铭会 E-mail:qingh@jlu.edu.cn;smh@jlu.edu.cn
  • 作者简介:秦贵和(1962-),男,教授,博士生导师. 研究方向:智能控制. E-mail:qingh@jlu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61872164)

Text input based on two⁃handed keyboard in virtual environment

Gui-he QIN(),Jun-feng HUANG,Ming-hui SUN()   

  1. College of Computer Science and Technology,JiLin University,Changchun 130012,China
  • Received:2021-03-01 Online:2022-08-01 Published:2022-08-12
  • Contact: Ming-hui SUN E-mail:qingh@jlu.edu.cn;smh@jlu.edu.cn

摘要:

文字输入是虚拟现实(VR)环境中最常见的交互行为,目前主流的文字输入是通过激光瞄准的方式实现的,然而,现有方法存在诸多弊端,例如效率低、抖动大、扣动扳机容易误触发等,并不能满足VR环境下频繁输入词语的需求。因此,本文提出一种VR环境新型文字输入方式。首先,对键盘进行分区,使用手柄选择字符所在区域,辅以单词消歧算法,实现以单词为单位进行文本输入;其次,对使用者的点击坐标进行聚类分析,做一键多词处理;最后,设计出3种符合用户习惯的键盘布局,并确定出最优的布局。实验结果表明:利用该文本输入方式的最优布局速度高达13.44 WPM(Words per minute),准确率高达92.26%,相比于其他输入方式有较大提高。

关键词: 计算机应用技术, 人机交互, 虚拟现实, 文本输入, 单词消歧

Abstract:

Text input is the most common interaction behavior in viture reality(VR) environment, and the mainstream text input is currently realized by laser pointing. However, the existing methods have many drawbacks, such as low efficiency, large jitter, and easy false trigger, which cannot be used to frequently input text in VR environment. Therefore, a novel text input method for VR environment is proposed. First,First, partition the keyboard, use the handle to select the area where the characters are located, and use the word disambiguation algorithm to realize text input in units of words; secondly, perform cluster analysis on the user's click coordinates to do one-key multi-word processing; Finally, three keyboard layouts that conform to user habits are designed, and the optimal layout is determined The experimental results show that the typing speed of the optimal layout is 13.44 WPM(Words Per Minute) with an accuracy of 92.26%, which is a significant improvement compared with other input methods.

Key words: computer application technology, human-computer interaction, virtual reality, text input, word disambiguation

中图分类号: 

  • TP391.9

图1

HTC Vive 手柄"

图2

左、右手的坐标聚类结果"

图3

QWERTY键盘的3种布局"

图4

一键布局词汇树结构"

表1

三棵词汇树同序列对应单词数"

对应单词数一键布局/%两键布局/%三键布局/%
198.1996.8874.13
21.712.6613.06
30.100.445.09
4--3.82
5--2.04
6--0.80

图5

三种布局的速度比较"

图6

三种布局错误率比较"

图7

3种布局主观体验对比"

1 赵剑, 王柳, 史丽娟, 等. 面向言语康复的多模态人机交互系统[J]. 吉林大学学报: 工学版, 2020, 50(4): 1478-1486.
Zhao Jian, Wang Liu, Shi Li-juan, et al. Multimodal human-computer interaction system for speech rehabilitation[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1478-1486.
2 Bowman D A, Wingrave C A, Campbell J M, et al. Using pinch gloves(TM) for both natural and abstract interaction techniques in virtual environments[J/OL]. [2021-03-01].
3 Yu D, Fan K, Zhang H, et al. Pizzatext: text entry for virtual reality systems using dual thumbsticks[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(11): 2927-2935.
4 Kim Y R, Kim G J. Hovr-type: smartphone as a typing interface in vr using hovering[C]∥IEEE International Conference on Consumer Electronics(ICCE), Seoul, Republic of Korea, 2017: 200-203.
5 Lee Y, Kim G J. Vitty: virtual touch typing interface with added finger buttons[C]∥International Conference on Virtual, Augmented and Mixed Reality, Seoul, Republic of Korea, 2017: 111-119.
6 Cui W, Zheng J, Lewis B, et al. Hotstrokes: word-gesture shortcuts on a trackpad[C]∥Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland UK,2019: 1-13.
7 Bowman D A, Rhoton C J, Pinho M S. Text input techniques for immersive virtual environments: an empirical comparison[C]∥Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Baltimore, USA, 2002: 2154-2158.
8 Pick S, Puika A S, Kuhlen T W. Swifter: design and evaluation of a speech-based text input metaphor for immersive virtual environments[C]∥IEEE Symposium on 3D User Interfaces(3DUI), Greenville, USA, 2016: 109-112.
9 梁士利, 魏莹, 潘迪, 等. 基于语谱图行投影的特定人二字汉语词汇识别[J]. 吉林大学学报: 工学版, 2017, 47(1): 294-300.
Liang Shi-li, Wei Ying, Pan Di, et al. Recognition to specific two words Chinese vocabulary based on projection matrix of spectrogram[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 294-300.
10 Wobbrock J O, Myers B A, Aung H H. Writing with a joystick: a comparison of date stamp, selection keyboard, and edgewrite[C]∥Proceedings of Graphics Interface, London, Canada, 2004: 1-8.
11 MacKenzie I S. KSPC (keystrokes per character) as a characteristic of text entry techniques[C]∥International Conference on Mobile Human-Computer Interaction, Berlin, Heidelberg, 2002: 195-210.
12 Venolia D, Neiberg F. T-Cube: a fast, self-disclosing pen-based alphabet[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Pisa, Italy, 1994: 265-270.
13 Zhao S, Dragicevic P, Chignell M, et al. EarPod: eyes-free menu selection using touch input and reactive audio feedback[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, California, USA, 2007: 1395-1404.
14 Benligiray B, Topal C, Akinlar C. SliceType: fast gaze typing with a merging keyboard[J]. Journal on Multimodal User Interfaces, 2019, 13(4): 321-334.
15 Mottelson A, Larsen C, Lyderik M, et al. Invisiboard: maximizing display and input space with a full screen text entry method for smartwatches[C]∥Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, Florence, Italy, 2016: 53-59.
16 Poirier F, Belatar M. Uniwatch: a soft keyboard for text entry on smartwatches using 3 keys watch user-interface and user evaluation[C]∥International Conference on Human-Computer Interaction, Toronto, Canada, 2016: 341-349.
17 Jiang H, Weng D. HiPad: text entry for head-mounted displays using circular touchpad[C]∥IEEE Conference on Virtual Reality and 3D User Interfaces(VR), Atlanta, United States, 2020: 692-703.
18 MacKenzie I S. Fitts' law as a research and design tool in human-computer interaction[J]. Human-computer Interaction, 1992, 7(1): 91-139.
19 Vertanen K, Kristensson P O. Complementing text entry evaluations with a composition task[J]. ACM Transactions on Computer-Human Interaction, 2014, 21(2): 2555691.
20 Levenshtein V I. Binary codes capable of correcting deletions, insertions, and reversals[J]. Soviet Physics Doklady, 1966, 10(8): 707-710.
[1] 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880.
[2] 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871.
[3] 王震,盖孟,许恒硕. 基于虚拟现实技术的三维场景图像表面重建算法[J]. 吉林大学学报(工学版), 2022, 52(7): 1620-1625.
[4] 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896.
[5] 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890.
[6] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[7] 李学勇,赵仲秋,张春松,路长厚. 基于有限元的人体⁃机械手交互力计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1612-1619.
[8] 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837.
[9] 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791.
[10] 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369.
[11] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[12] 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727.
[13] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711.
[14] 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322.
[15] 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!