吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2192-2202.doi: 10.13229/j.cnki.jdxbgxb20220419
• • 上一篇
Jin-wu GAO1,2(),Zhi-huan JIA1,2,Xiang-yang WANG1,2,Hao XING3,4
摘要:
提出了一种基于粒子群优化(PSO)算法的长短期记忆网络(LSTM)方法,对质子交换膜燃料电池(PEMFC)的电堆电压进行了退化预测。首先,分析了PEMFC的退化机理。然后,应用LSTM建立了电压退化预测模型,并采用Dropout层来防止过拟合以提高模型的泛化能力。此外,使用PSO算法优化LSTM方法中的初始学习率和Dropout概率以提升预测效果。最后,使用IEEE 2014 Data Challenge Data的燃料电池实际老化数据进行验证。结果表明,本文方法可以精确地预测燃料电池的退化,相比于传统的LSTM方法,预测精度提升了50%。
中图分类号:
1 | Liu D C, Lin R, Feng B, et al. Investigation of the effect of cathode stoichiometry of proton exchange membrane fuel cell using localized electrochemical impedance spectroscopy based on print circuit board[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7564-7573. |
2 | Silva R E, Gouriveau R, Jemei S, et al. Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144. |
3 | Yuan H, Dai H, Wei X, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: No. 228376. |
4 | Chen H C, Xu S C, Pei P C, et al. Mechanism analysis of starvation in PEMFC based on external characteristics[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5437-5446. |
5 | Zhong D, Lin R, Jiang Z, et al. Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations[J]. Applied Energy, 2020, 264: No. 114626. |
6 | Lin R, Che L, Shen D, et al. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochimica Acta, 2020, 330: No. 135251. |
7 | 王哲,谢怡,臧鹏飞,等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43. |
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43. | |
8 | Lin R H, Xi X N, Wang P N, et al. Review on hydrogen fuel cell condition monitoring and prediction methods[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5488-5498. |
9 | Keller R, Ding S X, Müller M, et al. Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults[J]. Control Engineering Practice, 2017, 66: 99-115. |
10 | Tang W, Lin R, Weng Y, et al. The effects of operating temperature on current density distribution and impedance spectroscopy by segmented fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10985-10991. |
11 | Gouriveau R, Hilairet M, Hissel D, et al. IEEE PHM 2014 data challenge[EB/OL]. [2022-03-02]. |
12 | Pukrushpan J T. Modeling and Control of fuel cell systems and fuel processors[D]. Ann Arbor, Michigan:University of Michigan, 2003. |
13 | Zhang X, Pisu P. Prognostic-oriented fuel cell catalyst aging modeling and its application to health-monitoring and prognostics of a PEM fuel cell[J]. International Journal of Prognostics and Health Management, 2020, 5(1): 2153-2648. |
14 | Hu Zun-yan, Xu Liang-fei, Li Jian-qiu, et al. A reconstructed fuel cell life-prediction model for a fuel cell hybrid city bus[J]. Energy Conversion and Management, 2018, 156: 723-732. |
15 | Lu L G, Ouyang M G, Huang H Y, et al. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles[J]. Journal of Power Sources, 2007, 164(1): 306-314. |
16 | Jouin M, Gouriveau R, Hissel D, et al. Degradations analysis and aging modeling for health assessment and prognostics of PEMFC[J]. Reliability Engineering & System Safety, 2016, 148: 78-95. |
17 | Javed K, Gouriveau R, Zerhouni N, et al. Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[J]. Journal Power Sources, 2016, 324: 745-757. |
18 | Silva R E, Gouriveau R, Jemei S, et al. Proton exchange membrane fuel cell degradation prediction based on adaptive Neuro-Fuzzy inference systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144. |
19 | Morando S, Jemei S, Hissel D, et al. Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[J].International Journal of Hydrogen Energy, 2017, 42(2): 1472-1480. |
20 | Wu Y M, Breaz E, Gao F, et al. Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[J]. IEEE Trans Energy Convers, 2016, 31(4): 1570-1582. |
21 | Ma R, Yang T, Breaz E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. |
22 | Pan R, Yang D, Wang Y J, et al. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30994-31008. |
23 | Liu H, Chen J, Hou M, et al. Data-based short-term prognostics for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20791-20808. |
24 | Zhou D, Gao F, Breaz E, et al. Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach[J]. Energy, 2017, 138: 1175-1186. |
25 | Zuo B, Cheng J S, Zhang Z H. Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15928-15937. |
26 | Dong S J, Luo T H. Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J]. Measurement: Journal of the International Measurement Confederation, 2013, 46(9): 3143-3152. |
27 | Chen J, Jing H, Chang Y, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382. |
28 | Mao L, Jackson L, Davies B. Effectiveness of a novel sensor selection algorithm in PEM fuel cell on-line diagnosis[J]. IEEE Transactions on Industrial Electronics (1982), 2018, 65(9): 7301-7310. |
29 | Pei P C, Chen D F, Wu Z Y, et al. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells[J]. Applied Energy, 2019, 254: No. 113730. |
30 | Revankar S T, Majumdar P. Fuel cells: Principles, Design, and Analysis[M]. Boca Raton:CRC Press, 2014. |
31 | Huang S Y, Ganesan P, Jung H, et al. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications[J]. Journal of Power Sources, 2012, 198: 23-29. |
32 | Xing L, Hossain M A, Tian M, et al. Platinum electro-dissolution in acidic media upon potential cycling[J]. Electrocatalysis-US, 2014, 5(1): 96-112. |
33 | Zhang S S, Yuan X Z, Hin J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 194(2): 588-600. |
34 | Ma R, Yang T, Breaz E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. |
35 | Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of Power Sources, 2004, 131(1/2): 41-48. |
36 | Yuan Xiao-zi, Li Hui, Zhang Sheng-sheng, et al. A review of polymer electrolyte membrane fuel cell durability test protocols[J]. Journal of Power Sources, 2011, 196(22): 9107-9116. |
37 | Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
38 | van den Bergh F, Engelbrecht A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. |
39 | 张慧斌, 王鸿斌, 胡志军. PSO 算法全局收敛性分析[J]. 计算机工程与应用, 2011, 47(34): 61-63. |
Zhang Hui-bin, Wang Hong-bin, Hu Zhi-jun. Analysis of particle swarm optimization algorithm global convergence method[J]. Computer Engineering and Applications, 2011, 47(34): 61-63. | |
40 | Kingma D P, Ba L J. Adam: a method for stochastic optimization[C]∥International Conference on Learning Representations,San Diego,California,USA 2015: No.13. |
[1] | 刘继宗,吴小平,孔维华. 基于鱼群优化算法的有轨电车用燃料电池混合动力系统参数配置[J]. 吉林大学学报(工学版), 2022, 52(9): 2004-2013. |
[2] | 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146. |
[3] | 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981. |
[4] | 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043. |
[5] | 都京,赵洪辉,王宇鹏,丁天威,魏凯,王恺,韩令海. 基于AMESim模型的燃料电池发动机排氢策略优化及整车搭载验证[J]. 吉林大学学报(工学版), 2022, 52(9): 2069-2076. |
[6] | 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095. |
[7] | 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129. |
[8] | 肖阳,王洁,刘孟军,杨发庆,张天瑶,兰巍. 质子交换膜燃料电池气体扩散层的力学改进模型[J]. 吉林大学学报(工学版), 2022, 52(9): 2147-2155. |
[9] | 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174. |
[10] | 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003. |
[11] | 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167. |
[12] | 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995. |
[13] | 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033. |
[14] | 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970. |
[15] | 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024. |
|