吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2213-2224.doi: 10.13229/j.cnki.jdxbgxb20210227

• 车辆工程·机械工程 •    

电动汽车永磁同步轮毂电机无差拍预测电压补偿控制

孙晓东(),张瑶,陈龙   

  1. 江苏大学 汽车工程研究院,江苏 镇江 212013
  • 收稿日期:2021-03-22 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:孙晓东(1981-),男,教授,博士生导师.研究方向:新能源汽车驱动控制,汽车电机及其控制,磁悬浮技术.E-mail: xdsun@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51875261);江苏省杰出青年基金项目(BK20180046)

Deadbeat predictive voltage compensation control for permanent magnet synchronous hub motors of electric vehicles

Xiao-dong SUN(),Yao ZHANG,Long CHEN   

  1. Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China
  • Received:2021-03-22 Online:2022-10-01 Published:2022-11-11

摘要:

针对传统的无差拍预测电流控制依赖数学模型,温度变化引起的参数失配会导致电流响应误差和电流脉动增大的问题,提出了一种基于复合滑模扰动观测器(CSMDO)的无差拍预测电压补偿控制(DPVCC)策略。该观测器可以同时估计未来电流值和系统的集总扰动,并将其补偿到电压矢量中来提高鲁棒性。基于30 kW永磁同步轮毂电机的MATLAB/Simulink仿真和实验结果显示,DPVCC可将电流误差降低60%以上,可以抑制电流脉动,提高控制系统精确性和鲁棒性。

关键词: 车辆工程, 永磁同步轮毂电机, 无差拍预测控制, 滑模扰动观测器, 电压补偿, 鲁棒控制

Abstract:

The traditional deadbeat predictive current control is dependent on mathematical model. The parameter mismatch caused by temperature change will increase the current response error and current pulsation. To solve these problems, a deadbeat predictive voltage compensation control (DPVCC) strategy based on composite sliding mode disturbance observer (CSMDO) was proposed. The observer can estimate the future current value and the lumped perturbation of the system simultaneously and compensate them into the voltage vector to improve the robustness. The MATLAB/Simulink simulation and experimental results based on a 30 kW permanent magnet synchronous hub motor show that DPVCC can reduce the current error more than 60%, which can restrain current pulsation, improve the accuracy and robustness of the control system.

Key words: vehicle engineering, permanent magnet synchronous hub motor, deadbeat predictive control, sliding mode disturbance observer, voltage compensation, robust control

中图分类号: 

  • TM341

图1

传统的无差拍预测电流控制框图"

表1

永磁同步轮毂电机的主要参数"

参 数符 号数 值
极对数pn22
定子电阻/ΩRs0.8
d?轴电感/mHLs4.5
q?轴电感/mHLs4.5
永磁体磁链/Wbψf0.215
转动惯量/(kg·m2J0.03
额定转速/(r·min-1N360
额定功率/kWPN30

图2

电感参数和电阻参数失配时的电流误差(参数失配范围±50%)"

图3

电感参数和永磁体磁链参数失配时的电流误差(参数失配范围±50%)"

图4

基于复合滑模扰动观测器无差拍预测电压补偿控制框图"

图5

永磁同步轮毂电机系统实验平台"

图6

不同参数失配条件下两种控制策略仿真结果"

图7

不同参数失配条件下两种控制策略实验结果"

图8

参数误差(0.1Ls +0.1ψf )存在情况下的实验结果"

1 张厚升,李震梅,边敦新,等. 电动汽车用三相开绕组永磁同步电机的控制及容错运行[J]. 吉林大学学报: 工学版, 2020, 50(3): 784-795.
Zhang Hou-sheng, Li Zhen-mei, Bian Dun-xin, et al. Control and fault⁃tolerant operation of TPOW⁃PMSM[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 784-795.
2 崔弘,刘国斌,王海彪,等. 混合电动汽车制动能量回收策略研究[J].吉林大学学报: 信息科学版, 2017, 35(1): 49-56.
Cui Hong, Liu Guo-bin, Wang Hai-biao, et al. Research on regenerative braking energy recovery of hybrid electric vehicle[J]. Journal of Jilin University (Information Science Edition), 2017, 35(1): 49-56.
3 曾小华,纪人桓,宋大凤,等. 无变速器电动汽车加速曲线拟合法[J]. 吉林大学学报: 工学版, 2020, 50(3): 804-811.
Zeng Xiao-hua, Ji Ren-huan, Song Da-feng, et al. Acceleration curve fitting method for electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 804-811.
4 Shi Z, Sun X D, Lei G, et al. Analysis and optimization of radial force of permanent magnet synchronous hub motors[J]. IEEE Transactions on Magnetics, 2020, 56(2): No. 7508804.
5 Shi Z, Sun X D, Cai Y F, et al. Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 2036-2044.
6 赵健,邓志辉,朱冰,等. 面向电子机械助力制动的永磁同步电机位置伺服控制[J].吉林大学学报:工学版, 2020, 50(3): 834-841.
Zhao Jian, Deng Zhi-hui, Zhu Bing, et al. Position servo control of permanent magnet synchronous motor for electro⁃mechanical brake booster[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 834-841.
7 张帅, 秦利燕, 杨列宸. 不同工况电动汽车轮毂电机磁场温度场分析[J]. 汽车实用技术, 2018, 42(19): 1-4.
Zhang Shuai, Qin Li-yan, Yang Lie-chen. Temperature field analysis of hub motor of electric vehicle under different working conditions[J]. Automobile Applied Technology, 2018, 42(19): 1-4.
8 王伟华,穆嘉毅,符容,等. 混合动力汽车凸极式永磁同步电机电流解耦控制[J]. 吉林大学学报: 工学版, 2017, 47(3): 693-700.
Wang Wei-hua, Mu Jia-yi, Fu Rong, et al. Current decouple control of salient-pole permanent magnet synchronous motor for hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 693-700.
9 王军年,张煦,康丹,等. 轮毂电机驱动太阳能赛车参数匹配及巡航控制[J]. 吉林大学学报: 工学版, 2015, 45(3): 689-695.
Wang Jun-nian, Zhang Xu, Kang Dan, et al. Parameter matching and cruising control of a solar race car with in-wheel motor[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 689-695.
10 李刚,宗长富,陈国迎,等. 线控四轮独立驱动轮毂电机电动车集成控制[J].吉林大学学报:工学版, 2012, 42(4): 796-802.
Li Gang, Zong Chang-fu, Chen Guo-ying, et al. Integrated control for X-by-wire electric vehicle with 4 independently driven in-wheel motors[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 796-802.
11 Jiang W D, Wang P X, Ni Y Y, et al. Multimode current hysteresis control for brushless DC motor in motor and generator state with commutation torque ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2975-2985.
12 Choi H H, Yun H M, Kim Y. Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 540-547.
13 张虎,张建伟,郭孔辉,等. 基于扰动观测器的电动助力转向系统用永磁同步电机鲁棒预测电流控制[J]. 吉林大学学报: 工学版, 2015, 45(3): 711-718.
Zhang Hu, Zhang Jian-wei, Guo Kong-hui, et al. Robust prediction current control of permanent magnet synchronous motor for EPS based disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 711-718.
14 Siami M, Khaburi D A, Rivera M, et al. An experimental evaluation of predictive current control and predictive torque control for a PMSM fed by a matrix converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8459-8471.
15 张博,张建伟,郭孔辉,等. 路感模拟用永磁同步电机电流控制[J].吉林大学学报: 工学版, 2019, 49(5): 1405-1413.
Zhang Bo, Zhang Jian-wei, Guo Kong-hui, et al. Current control of permanent magnet synchronous motor for road feeling simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1405-1413.
16 Rovere L, Formentini A, Gaeta A, et al. Sensorless finite-control set model predictive control for IPMSM drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5921-5931.
17 Luo Y X, Liu C H. Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6960-6972.
18 Zhang X G, He Y K. Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7838-7851.
19 Hang J, Zhang J B, Xia M J, et al. Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6405-6418.
20 Zhang X G, Zhang L, Zhang Y C. Model predictive current control for PMSM drives with parameter robustness improvement[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1645-1657.
21 Sun X D, Wu M K, Lei G, et al. An improved model predictive current control for PMSM drives based on current track circle[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3782-3793.
22 Yao Y, Huang Y K, Peng F, et al. An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10145-10155.
23 Yuan X, Zhang C N, Zhang S. A novel deadbeat predictive current control scheme for OEW-PMSM drives[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 11990-12000.
24 Kang S, Soh J, Kim R. Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 159-168.
25 Lin X G, Huang W X, Jiang W, et al. Deadbeat direct torque and flux control for permanent magnet synchronous motor based on stator flux oriented[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5078-5092.
26 薛诚, 宋文胜, 武雪松, 等. 无差拍优化五相永磁同步电机有限集模型预测转矩控制算法[J]. 中国电机工程学报, 2017, 37(23): 7014-7023, 7093.
Xue Cheng, Song Wen-sheng, Wu Xue-song, et al. Finite-control-set model predictive torque control algorithm with deadbeat optimization for five-phase permanent-magnet synchronous machines drives[J]. Proceedings of the CSEE, 2017, 37(23): 7014-7023, 7093.
27 Akrem M A, Pragasen P. Novel flux linkage estimation algorithm for a variable flux PMSM[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2319-2335.
28 高文, 肖海峰, 马昭, 等. 永磁同步电机预测模型参数误差分析研究[J]. 自动化与仪表, 2020, 35(9): 80-83, 104.
Gao Wen, Xiao Hai-feng, Ma Zhao, et al. Parameter error analysis of the prediction control model of permanent magnet synchronous motor[J]. Automation and Instrumentation, 2020, 35(9): 80-83, 104.
29 Pei G J, Liu J X, Gao X N, et al. Deadbeat predictive current control for SPMSM at low switching frequency with moving horizon estimator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 345-353.
30 Jiang Y J, Xu W, Mu C X, et al. Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 251-263.
31 Zhang X G, Hou B S, Mei Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3818-3834.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[4] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[5] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[6] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[7] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[8] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[9] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[10] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[11] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[12] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[13] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[14] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!