吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2182-2191.doi: 10.13229/j.cnki.jdxbgxb20220281

• • 上一篇    

基于高阶燃料电池模型的多目标滑模控制

胡广地1(),景浩1,李丞1,2,冯彪1,刘晓东1   

  1. 1.西南交通大学 机械工程学院,成都 610036
    2.中国汽车技术研究中心有限公司,天津 300300
  • 收稿日期:2022-03-21 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:胡广地(1964-),男,教授,博士. 研究方向:非线性鲁棒控制. E-mail:ghu@swjtu.edu.cn
  • 基金资助:
    四川省重大科技专项项目(2019ZDZX0028)

Multi⁃objective sliding mode control based on high⁃order fuel cell model

Guang-di HU1(),Hao JING1,Cheng LI1,2,Biao FENG1,Xiao-dong LIU1   

  1. 1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610036,China
    2.China Automotive Technology & Research Center Co. ,Ltd. ,Tianjin 300300,China
  • Received:2022-03-21 Online:2022-09-01 Published:2022-09-13

摘要:

为了提高质子交换膜燃料电池(PEMFC)的效率和寿命,对燃料电池的多个状态进行了精确控制。首先,在Simulink中建立了12阶燃料电池模型,运用试验数据对建模参数进行拟合,仿真模型的输出电压最大误差为3.68%。其次,基于所建立的模型设计了3输入、3输出滑模控制器,通过空压机电压、阳极进气流量和冷却水流量分别控制电堆过氧比、阴阳极气体压力差和温度。仿真结果表明:与PI控制器相比,当负载电流突变时,所设计的滑模控制器缩短了3 s的过氧比控制过渡时间,阴、阳极压力差波动从40 Pa降低至2 Pa左右,并且温度波动控制在0.05 K以内。

关键词: 车辆工程, 质子交换膜燃料电池, 系统效率, 建模与仿真, 多输入多输出, 滑模控制器

Abstract:

To improve the efficiency and lifetime of the proton exchange membrane fuel cell(PEMFC), multiple states of the fuel cell were accurately controlled. Firstly, a 12-order fuel cell model is established in Simulink, and the modeling parameters are fitted using experimental data, and the maximum error of the simulation model output voltage is 3.68%. Secondly, a 3-input and 3-output sliding mode controller is designed based on the established model to control the stack oxygen excess ratio, cathode and anode gas pressure difference and temperature through the compressor voltage, anode inlet gas flow and cooling water flow, respectively. The simulation results show that compared with the PI controller, the designed sliding-mode controller shortens the transition time of oxygen excess ratio control by 3 seconds when the load current changes abruptly, reduces the fluctuation of cathode and anode pressure difference from 40 Pa to about 2 Pa, and controls the temperature fluctuation within 0.05 K.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), system efficiency, modeling and simulation, multi-input multi-output, sliding mode controller

中图分类号: 

  • TM911.4

表1

电堆基本参数"

参数取值
燃料电池的节数N316
额定功率Pmax/kW70
燃料电池的活化面积A/cm2260
燃料电池阳极容积Van/m30.002 35
燃料电池阴极容积Vca/m30.004 5
燃料电池供应歧管容积Vsm/m30.005

图1

PEMFC系统结构图"

表2

空压机及电堆电压参数值"

参数取值
理论电动势V0/V1.229
电阻R/Ω3.971 5
电荷传输系数α0.155
法拉第常数F/(C·mol-196 485
表观电池活化面积Aapp/cm2292.87
阻抗常数R0/Ω·cm-20.077 4
阻抗常数R1/Ω·cm-20.008 36
极化曲线系数nc/(cm2·A-16.679 2
极化曲线系数m/10-6 V3.478
极化曲线系数b/V0.013 521
极化曲线系数a/105 Pa0.279 56
交换电流密度i0/(A·cm-21.49
MAP图拟合参数P00288.2
MAP图拟合参数P01-0.000 463 1
MAP图拟合参数P10-336.9
MAP图拟合参数P20-74.51
MAP图拟合参数P02/10-8-4.166

MAP图拟合参数P11

环境压力Patm/Pa

环境温度Tatm/K

0.006 191

101 325

298.15

图2

空压机MAP拟合图"

图3

仿真模型验证图"

图4

拟合不同负载下最佳过氧比曲线图"

图5

多输入、多输出滑模控制结构图"

表3

本文控制器和PI控制器调节参数"

控制器调节参数值
本文k1=0.01k2=0.1k3=0.01
ε1=6ε2=20ε3=1
PIkp1=1×10-5kp2=5000kp3=1.4
P1=1×10-5P2=6500P3=1.5

图6

电堆负载电流"

图7

本文控制器与PI控制器控制性能对比"

表4

误差对比分析"

误差类型控制器过氧比压力差温度
IAE本文4.08224 4000.332 3
PI5.90943 5500.440 9
ITAE本文331.016 64066.38
PI474.466 65087.93
ISE本文1.3581.155×1090.003 2
PI2.5421.333×1090.004 8
ITSE本文43.641.862×1080.735
PI64.504.215×1081.065
1 李佳琪,徐潇源,严正.大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J].上海交通大学学报,2022,56(3):253-266.
Li Jia-qi, Xu Xiao-yuan, Yan Zheng. A review of research on coupling electric-hydrogen energy and transportation system in the context of large-scale new energy vehicle access[J]. Journal of Shanghai Jiaotong University,2022,56(3):253-266.
2 孙闫, 夏长高, 尹必峰, 等. 燃料电池电动汽车的能量管理[J/OL]. [2022-02-20].
3 高助威,李小高,刘钟馨,等.氢燃料电池汽车的研究现状及发展趋势[J].材料导报,2022,36(14):74-81.
Gao Zhu-wei, Li Xiao-gao, Liu Zhong-xin, et al. Research status and development trend of hydrogen fuel cell vehicles[J]. Materials Guide,2022,36(14):74-81.
4 Murschenhofer D, Kuzdas D, Braun S, et al. A real-time capable quasi-2D proton exchange membrane fuel cell model[J]. Energy Conversion and Management, 2018, 162: 159-175.
5 Pukrushpan J T, Peng H, Stefanopoulou A G. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model[C]∥ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, USA, 2002: 637-648.
6 Pukrushpan J T, Stefanopoulou A G, Peng H. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46.
7 Pukrushpan J T, Peng H, Stefanopoulou A G. Control-oriented modeling and analysis for automotive fuel cell systems[J]. Journal of Dynamic Systems Measurement and Control, Control, 2004, 126(1): 14-25.
8 Grujicic M, Chittajallu K M, Law E H, et al. Model-based control strategies in the dynamic interaction of air supply and fuel cell[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2004, 218(7): 487-499.
9 Kunusch C, Puleston P, Mayosky M. Sliding-Mode Control of PEM Fuel Cells[M]. London: Springer Science & Business Media, 2012.
10 Sankar K, Jana A K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system[J]. Energy Conversion and Management, 2018, 171: 541-565.
11 Wang Y, Li H, Feng H, et al. Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy Conversion and Management, 2021, 249: No. 114851.
12 李奇, 冯嘉, 尹良震, 等. 基于多阶滑模观测器的PEMFC发电系统输出净功率优化控制方法[J]. 电网技术, 2022, 46(3): 1005-1015.
Li Qi, Feng Jia, Yin Liang-Zhen, et al. A multi-order sliding mode observer-based optimal control method for net power output of PEMFC power generation system[J]. Power Grid Technology, 2022, 46(3): 1005-1015.
13 洪凌. 车用燃料电池发电系统氢气回路控制[D]. 杭州:浙江大学控制科学与工程学院, 2017.
Hong Ling. Hydrogen circuit control for automotive fuel cell power generation system[D]. Hangzhou: School of Control Science and Engineering, Zhejiang University, 2017.
14 Zhang Q, Tong Z, Tong S, et al. Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode[J]. Energy, 2021, 218(C): No. 119476.
15 Matraji I, Laghrouche S, Wack M. Pressure control in a PEM fuel cell via second order sliding mode[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16104-16116.
16 Quan S, Wang Y X, Xiao X, et al. Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells[J]. Applied Energy, 2021, 293: No. 116919.
17 申小玲, 刘朝晖, 郭昌海. 温控系统对质子交换膜燃料电池性能影响[J]. 电源技术, 2017, 41(1): 54-56.
Shen Xiao-ling, Liu Zhao-hui, Guo Chang-hai. Effect of temperature control system on the performance of proton exchange membrane fuel cells[J]. Power Technology, 2017, 41(1): 54-56.
18 程珍, 陈科, 罗超. 基于模糊预测控制的燃料电池温度控制系统的研究[J]. 仪表技术, 2012, 40(8): 1-4, 8.
Cheng Zhen, Chen Ke, Luo Chao. Study of fuel cell temperature control system based on fuzzy predictive control[J]. Instrumentation Technology, 2012, 40(8): 1-4, 8.
19 Cheng S, Fang C, Xu L, et al. Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13566-13575.
20 梁鹏.车用水冷燃料电池用户手册[Z].
21 Slotine J J E, Li W. Applied Nonlinear Control[M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
22 Lu X Y, Spurgeon S K. Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode[J]. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 1999, 9(5): 275-305.
23 邓惠文, 李奇, 陈维荣. 适用于PEMFC系统过氧化估计的HOSM观测器研究[J]. 中国电机工程学报, 2017, 37(17): 5058-5068, 5225.
Deng Hui-wen, Li Qi, Chen Wei-rong. Research on HOSM observer applicable to peroxide estimation of PEMFC system[J]. Chinese Journal of Electrical Engineering, 2017, 37(17): 5058-5068, 5225.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[4] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[5] 肖阳,王洁,刘孟军,杨发庆,张天瑶,兰巍. 质子交换膜燃料电池气体扩散层的力学改进模型[J]. 吉林大学学报(工学版), 2022, 52(9): 2147-2155.
[6] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[7] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[8] 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167.
[9] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[10] 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033.
[11] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[12] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[13] 张恒,詹志刚,陈奔,隋邦杰,潘牧. 气体扩散层各向异性传输特性的孔尺度模拟[J]. 吉林大学学报(工学版), 2022, 52(9): 2055-2062.
[14] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[15] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!