吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2419-2427.doi: 10.13229/j.cnki.jdxbgxb20210278
• 计算机科学与技术 • 上一篇
Xiao-ying PAN1,2(),De WEI1,2,Yi-zhe ZHAO1,3
摘要:
为了提高肺癌的早期诊断效果,提出了一种基于深度学习架构的肺结节检测算法,设计了基于V-Net和R-CNN混合的Mask R-CNN肺结节检测模块和基于多尺度与上下文的肺结节假阳性衰减网络。该算法首先使用V-Net进行肺结节定位,再使用3D R-CNN进行假阳性衰减,判断候选区域是否为真实肺结节。算法中引入Inception网络设计了V-Net多尺度模块,实现肺结节定位;设计3D R-CNN肺结节检测模型,融合肺结节定位结果,确定假阳性肺结节候选区域;设计的假阳性衰减网络分类模型,实现了对肺结节进行去假阳性判断,提升检测有效性。实验结果显示,本算法取得了0.97的FROC值,较已有算法提升了5%,表明本算法对肺癌早期检测和诊断具有较好的临床意义。
中图分类号:
1 | 邹小农. 中国肺癌流行病学[J]. 中华肿瘤防治杂志, 2007, 14(12): 881-883. |
Zou Xiao-nong. Epidemiology of lung cancer in China[J]. China cancer Prev Trea, 2007, 14(12): 881-883. | |
2 | 杨德昌, 杨拴盈. 肺癌诊断水平的现状与进展[J]. 中华结核和呼吸杂志, 2001, 24(8): 450-460. |
Yang De-chang, Yang Shuan-ying. Current status and progress of diagnosis of lung cancer[J]. Chinese Journal of Tuberculosis and Respiratory Disease, 2001, 24(8): 450-460. | |
3 | 范雪丽, 时高峰, 杜煜, 等. 多层螺旋 CT 扫描在早期肺癌鉴别诊断中的应用[J]. 临床合理用药, 2017, 10(34): 114-116. |
Fan Xue-li, Shi Gao-feng, Du-yu, et al. Application of multislice spiral CT scan in differential diagnosis of early lung cancer[J]. Rational Clinical Drug Use, 2017, 10(34): 114-116. | |
4 | 曹捍波, 王梅, 王和平. MSCT 对孤立性肺结节 (≤ 2cm) 胸膜凹陷征的诊断及鉴别诊断价值[J]. 医学影像学, 2017, 27(8): 1471-1474. |
Cao Han-bo, Wang Mei, Wang He-ping. Value of MSCT in the diagnosis and differential diagnosis of solitary pulmonary nodules (≤ 2 cm) with pleural depression[J]. Medical Radioglaciology, 2017, 27(8): 1471-1474. | |
5 | Ozdemir O, Woodward B, Berlin A A. Propagating uncertainty in multi-stage Bayesian convolutional neural networks with application to pulmonary nodule detection[EB/OL]. [2021-02-26]. arXiv preprint:1712.00497,2017. |
6 | Tan M, Deklerck R, Jansen B, et al. A novel computer‐aided lung nodule detection system for CT images [J]. Medical Physics, 2011, 38(10): 5630-5645. |
7 | Setio A A A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160-1169. |
8 | Wang B, Qi G J, Tang S, et al. Automated pulmonary nodule detection: High sensitivity with few candidates[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 759-767. |
9 | 王伟胜. 基于 CT 影像的肺癌计算机辅助诊断关键技术研究[D]. 长沙: 湖南大学计算机学院, 2016. |
Wang Wei-sheng. Research on key techniques of computer-aided diagnosis of lung cancer based on CT images[D]. Changsha: Department of Computer Science, Hunan University, 2016. | |
10 | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]∥ Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017: 4278-4284. |
11 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]∥International Conference on Medical Image Computing and Computer-assisted Intervention, Cham: Springer, 2015: 234-241. |
12 | Cheng J Z, Ni D, Chou Y H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Scientific Reports, 2016, 6: No. 24454. |
13 | Buty M, Xu Z Y, Gao M C, et al. Characterization of lung nodule malignancy using hybrid shape and appearance features[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 662-670. |
14 | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, Lille, France, 2015: 448-456. |
15 | Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
16 | Ding J, Li A, Hu Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2017: 559-567. |
17 | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA,2013: 580-587. |
18 | Uijlings J R R, van de Sande K E, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. |
19 | Dou Q, Chen H, Jin Y, et al. Automated pulmonary nodule detection via 3d convnets with online sample filtering and hybrid-loss residual learning[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2017: 630-638. |
20 | Bandos A I, Rockette H E, Song T, et al. Area under the free-response ROC curve (FROC) and a related summary index[J]. Biometrics, 2009,65(1):247-256. |
[1] | 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841. |
[2] | 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880. |
[3] | 申铉京,张雪峰,王玉,金玉波. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1857-1864. |
[4] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[5] | 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856. |
[6] | 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888. |
[7] | 胡丹,孟新. 基于时变网格的对地观测卫星搜索海上船舶方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1896-1903. |
[8] | 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665. |
[9] | 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656. |
[10] | 高明华,杨璨. 基于改进卷积神经网络的交通目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1353-1361. |
[11] | 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421. |
[12] | 康耀龙,冯丽露,张景安,陈富. 基于谱聚类的高维类别属性数据流离群点挖掘算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1422-1427. |
[13] | 王文军,余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433. |
[14] | 陈雪云,贝学宇,姚渠,金鑫. 基于G⁃UNet的多场景行人精确分割与检测[J]. 吉林大学学报(工学版), 2022, 52(4): 925-933. |
[15] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
|