吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2796-2805.doi: 10.13229/j.cnki.jdxbgxb20210435

• 车辆工程·机械工程 • 上一篇    下一篇

计及电池功率状态的再生制动优化策略

刘兴涛1,2(),林思源1,武骥1,2(),何耀3,刘新天3   

  1. 1.合肥工业大学 车辆工程系,合肥 230009
    2.安徽省智能汽车工程实验室,合肥 230009
    3.合肥工业大学 汽车工程技术研究院,合肥 230002
  • 收稿日期:2021-05-17 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 武骥 E-mail:xingtao.liu@hfut.edu.cn;wu.ji@hfut.edu.cn
  • 作者简介:刘兴涛(1985-),男,副研究员,博士. 研究方向:锂离子电池建模与状态估计. E-mail: xingtao.liu@hfut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61803138);安徽省自然科学基金项目(2008085QF301);安徽省科协2020年青年科技人才托举计划项目(RCTJ202008);安徽高校协同创新项目(GXXT-2019-002)

Regenerative braking optimization strategy considering battery state of power

Xing-tao LIU1,2(),Si-yuan LIN1,Ji WU1,2(),Yao HE3,Xin-tian LIU3   

  1. 1.Department of Vehicle Engineering,Hefei University of Technology,Hefei 230009,China
    2.Anhui Intelligent Vehicle Engineering Laboratory,Hefei 230009,China
    3.Automotive Research Institute,Hefei University of Technology,Hefei 230002,China
  • Received:2021-05-17 Online:2022-12-01 Published:2022-12-08
  • Contact: Ji WU E-mail:xingtao.liu@hfut.edu.cn;wu.ji@hfut.edu.cn

摘要:

考虑到现有车辆再生制动策略对电池约束不够充分,易造成能量回收效率不高、电池过充等问题,为保护电池以及提高再生制动效率,本文充分考虑了动力电池功率状态,提出了一种优化再生制动策略,并运用动态规划算法求取最优解。仿真结果表明,在固定工况和NEDC工况下,本文策略比基于I曲线的方法在经济性上提高了36.4%和40.31%,比单目标的方法在稳定性上分别提高了48.61%和60.41%。测试实验验证了本文所提策略的实用性。

关键词: 车辆工程, 纯电动汽车, 功率状态, 再生制动, 动态规划

Abstract:

The existing regenerative braking strategy has insufficient constraints on the battery, resulting in low energy recovery efficiency, battery overcharge, and other problems. To protect the battery and improve the regenerative braking efficiency, the state of power of the battery has been fully considered. An optimized regenerative braking strategy has been proposed using the dynamic programming algorithm to obtain the optimal solution. Under fixed working condition and NEDC working condition,Compared with the method based on the I curve, the strategy proposed improves the economy by more than 36% and the stability by more than 48% compared with the single objective method. In addition, test experiments verify the practicability of the proposed strategy.

Key words: automotive engineering, battery electric vehicle, state of power, regenerative braking, dynamic programming

中图分类号: 

  • TM91

表1

纯电动汽车整车参数"

参 数数值
满载质量/kg1580
整备质量/kg1200
轴距/mm2467
前轮距/mm1480
后轮距/mm987
质心高度/mm500
轮胎半径/mm287
迎风面积/m21.97

空气阻力系数

滚动阻力系数

0.284

0.01

图1

电机效率图"

表2

纯电动汽车电机参数"

参 数数值
额定电压/V420
额定转速/(r·min?17500
最大转速/(r·min?110 000
最大工作电流/A220
峰值功率/kW80
峰值转矩/(N·m)240

图2

戴维南模型"

图3

前、后轴制动力曲线"

图4

电池SOC"

图5

回收能量"

图6

稳定性系数"

表3

固定工况下3种策略的结果比较"

策略最终的SOC/%回收能量/J稳定性系数平均数
考虑稳定性50.199202 9700.1091
单目标50.220230 8570.2123
基于I曲线50.1733148 7960.1081

图7

NEDC循环工况"

图8

NEDC工况下的回收能量"

表4

NEDC工况下三种策略的结果比较"

策略回收能量/J稳定性系数平均数

考虑车辆

稳定性

1 201 0080.007 189
单目标1 523 5720.018 16
基于I曲线716 8500.006 349

图9

不同荷电状态下的电池回收功率"

1 Ruan Jia-gen, Walker Paul, Zhu Bo. Experimental verification of regenerative braking energy recovery system based on electric vehicle equipped with 2-speed DCT[C]//7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 2014: 1-8.
2 初亮,刘达亮,刘宏伟,等. 纯电动汽车制动能量回收评价方法研究[J]. 汽车工程, 2017, 39(4): 471-479.
Chu Liang, Liu Da-liang, Liu Hong-wei, et al. Research on evaluation method of braking energy recovery for pure electric vehicle[J]. Automotive Engineering, 2017, 39(4): 471-479.
3 Xu Guo-qing, Xu Kun, Zheng Chun-hua, et al. Fully electrified regenerative braking control for deep energy recovery and safety maintaining of electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1186-1198.
4 朱波,陈超,徐益胜,等. 纯电动汽车再生制动与ESC液压制动协调控制[J]. 合肥工业大学学报:自然科学版, 2020, 43(11): 1441-1449.
Zhu Bo, Chen Chao, Xu Yi-sheng,et al. Coordinated control of regenerative braking and ESC hydraulic braking for pure electric vehicle[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(11): 1441-1449.
5 牛继高,张兵,徐春华. 基于模糊控制的纯电动汽车制动能量回收研究[J]. 中原工学院学报, 2020, 31(2): 23-28.
Niu Ji-gao, Zhang Bing, Xu Chun-hua. Research on braking energy recovery of pure electric vehicle based on fuzzy control[J]. Journal of Zhongyuan University of Technology, 2020, 31(2): 23-28.
6 张渊博,王伟达,张华,等. 基于新型改进遗传算法的混合动力客车高效制动能量回收预测控制策略研究[J]. 机械工程学报, 2020, 56(18): 105-115.
Zhang Yuan-bo, Wang Wei-da, Zhang Hua, et al. Research on predictive control strategy of high efficiency braking energy recovery for hybrid electric bus based on new improved genetic algorithm[J]. Journal of Mechanical Engineering, 2020, 56(18): 105-115.
7 Zhang Jun-jiang, Yang Yang, Qin Da-tong, et al. et al. Regenerative braking control method based on predictive optimization for four-wheel drive pure electric vehicle[J]. IEEE Access, 2020, 9: 1394-1406.
8 Yu De-liang, Wang Wen-song, Zhang Hui-bo, et al. Research on anti-lock braking control strategy of distributed-driven electric vehicle[J]. IEEE Access, 2020, 8: 162467-162478.
9 Xu Wei, Chen Hong, Zhao Hai-yan, et al. Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system[J]. Mechatronics, 2019, 57: 95-108.
10 何耀,邱振华,刘新天,等. 信息融合架构下的新型再生制动控制策略[J]. 控制与决策, 2018, 33(7): 1231-1238.
He Yao, Qiu Zhen-hua, Liu Xin-tian, et al. New regenerative braking control strategy based on information fusion architecture[J]. Control and Decision, 2018, 33(7): 1231-1238.
11 Heydari S, Fajri P, Sabzehgar R, et al. Optimal brake allocation in electric vehicles for maximizing energy harvesting during braking[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 1806-1814.
12 Malysz P, Ye J, Gu R, et al. Battery state-of-power peak current calculation and verification using an asymmetric parameter equivalent circuit model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4512-4522.
13 Wang Yu-jie, Pan Rui, Chang Liu, et al. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation[J]. Journal of Power Sources, 2018, 374: 12-23.
14 Wang Yu-jie, Zhang Xu, Liu Chang, et al. Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter[J]. Journal of Power Sources, 2018, 389: 93-105.
15 靳立强, 孙志祥, 郑迎. 电动轮汽车复合再生制动系统防抱协调控制[J]. 吉林大学学报:工学版, 2017, 47(5):1344-1351.
Jin Li-qiang, Sun Zhi-xiang, Zheng Ying. Coordinated anti-lock braking control of compound regenerative braking system in electric-wheel vehicle[J].Journal of Jilin University (Engineering and Technology Edition) 2017, 47(5):1344-1351.
16 王庆年, 王达, 宋世欣. 电动轮汽车再生制动系统控制策略[J]. 吉林大学学报:工学版, 2015, 45(2):341-346.
Wang Qing-nian, Wang Da, Song Shi-xin. Control strategy for regenerative braking system of in-wheel motor vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2):341-346.
17 朱志祥. 基于内阻模型的锂电池健康状态评价[D]. 绵阳:西南科技大学制造科学与工程学院, 2020.
Zhu Zhi-xiang. Health status evaluation of lithium battery based on internal resistance model[D]. Mianyang: School of Manufacturing Science and Engineering, Southwest University of Science and Technology, 2020.
18 何洪文,熊瑞. 基于滑模观测器的锂离子动力电池荷电状态估计[J]. 吉林大学学报:工学版, 2011, 41(3): 623-628.
He Hong-wen, Xiong Rui. State-of-charge estimation of lithium-ion power battery using sliding mode observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 623-628.
19 Pinto C, Barreras J V, Castro R D, et al. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles[J]. Energy, 2017, 137: 272-284.
20 Lin Peng, Wang Zheng-bo, Jin Peng, et al. Novel polarization voltage model: accurate voltage and state of power prediction[J]. IEEE Access, 2020, 8: 92039-92049.
21 秦大同, 林毓培, 胡建军, 等. 基于无级变速器速比控制的插电式混合动力汽车再生制动控制策略[J]. 吉林大学学报: 工学版, 2018, 48(2):380-386.
Qin Da-tong, Lin Yu-pei, Hu Jian-jun, et al. Regenerative braking control strategy of plug-in hybrid electric vehicle based on speed ratio control continuously variable transmission[J]. Journal of Jilin University (Engineering and Technology Edition),2018, 48(2):380-386.
22 彭伟. 基于EMB的纯电动汽车制动稳定性与制动能量回收多目标优化[D]. 杭州: 杭州电子科技大学机械工程学院, 2018.
Peng Wei. Multi objective optimization of braking stability and braking energy recovery of pure electric vehicle based on EMB[D]. Hangzhou:College of Mechanical Engineering of Hangzhou University, Electronic Science and Technology, 2018.
23 Ma Zheng-wei, Sun Da-xu. Energy Recovery strategy based on ideal braking force distribution for regenerative braking system of a four-wheel drive electric vehicle[J]. IEEE Access, 2020, 8: 136234-136242.
24 余志生. 汽车理论[M]. 3版.北京:机械工业出版社, 2000.
[1] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
[2] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[3] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[4] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[5] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[6] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[7] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[8] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[9] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[10] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[11] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[12] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[13] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[14] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鹏,李元春 . 基于铰链结构的机械臂操作
柔性负载系统建模与控制
[J]. 吉林大学学报(工学版), 2008, 38(02): 444 -0448 .
[2] 刘宗巍,王登峰,姜吉光,梁杰,王世刚 . 用主动噪声控制法改善车内声品质[J]. 吉林大学学报(工学版), 2008, 38(02): 258 -0262 .
[3] 孙万臣,王忠恕,李国良,刘忠长,解方喜,杨继蕊 . 燃料着火性对增压中冷柴油机瞬态工况排放的影响[J]. 吉林大学学报(工学版), 2008, 38(04): 791 -796 .
[4] 史文库,洪哲浩,赵涛 . 汽车动力总成悬置系统多目标优化设计及软件开发
[J]. 吉林大学学报(工学版), 2006, 36(05): 654 -0658 .
[5] 侯敬巍;赵丁选;尚涛;唐新星 . 遥操作机器人执行末端的力反射型变增益力反馈算法[J]. 吉林大学学报(工学版), 2008, 38(03): 570 -0574 .
[6] 孙国恩, 张莉, 李红姬, 张春玲, 梁继才, 张万喜. 纳米复合材料的结构与性能[J]. 吉林大学学报(工学版), 2005, 35(06): 577 -0581 .
[7] 徐涛,程飞,宋广才,禤伟旗,薛冰洋 . 结构拓扑修改静态重分析的BFGS方法[J]. 吉林大学学报(工学版), 2009, 39(01): 103 -107 .
[8] 李幼德,刘巍,李静,赵健,宋大凤,沙宏亮 . 汽车稳定性控制系统硬件在环仿真[J]. 吉林大学学报(工学版), 2007, 37(04): 737 -740 .
[9] 林沂,晏磊,童庆禧 . 针对水下辅助导航相关匹配算法的
特征区最优航迹规划
[J]. 吉林大学学报(工学版), 2008, 38(02): 439 -0443 .
[10] 于多年,邹骥,王登峰,王建勇,温桂金. 重型卡车驾驶室焊点的拓扑优化分析[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 264 -0268 .