吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1746-1755.doi: 10.13229/j.cnki.jdxbgxb.20221353

• 交通运输工程·土木工程 • 上一篇    

基于网格化的路表温度感知技术

刘状壮1,2(),郑文清1,郑健1,3,李轶峥1,季鹏宇1,沙爱民1,2   

  1. 1.长安大学 公路学院,西安 710064
    2.长安大学 特殊地区公路工程教育部重点实验室,西安 710064
    3.中冶南方工程技术有限公司 深圳分公司,广东 深圳 518028
  • 收稿日期:2022-10-23 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:刘状壮(1986-),男,教授,博士.研究方向:道路工程材料,道路环境感知,交通与能源融合.E-mail:zzliu@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1600200)

Pavement surface temperature monitoring method based on gridding approach

Zhuang-zhuang LIU1,2(),Wen-qing ZHENG1,Jian ZHENG1,3,Yi-zheng LI1,Peng-yu JI1,Ai-min SHA1,2   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.Key Laboratory of Highway Engineering in Special Region,Ministry of Education,Chang'an University,Xi'an 710064,China
    3.Shenzhen Branch,Wuhan Iron & Steel Design & Research Institute,Shenzhen 518028,China
  • Received:2022-10-23 Online:2023-06-01 Published:2023-07-23

摘要:

为实现路表温度的高精度预测,考虑路域环境的周期性和道路结构在纵向空间上的确定性特征,提出了包含天气模式的路表温度网格化感知方法,并基于试验路段的大量实测数据进行数据挖掘和分析。依据层次聚类算法的两种不同距离函数建立了两种感知网络模型(欧氏距离模型和相关距离模型)。利用平均绝对误差、均方根误差和平均相对误差对模型的预测效果进行评价。通过对3类天气模式下模型的预测误差水平进行分析,对预测值与实测值进行对比。结果显示:本文提出的网格化感知方法对天气模式较为敏感,两种模型均在抑制天气下的预测效果最好,抑制和中性天气下平均相对误差小于5%,极端天气下最大平均相对误差为5.43%。模型均方根误差在极端天气下最大为1.2 ℃,其他天气模式下均小于1 ℃。

关键词: 道路工程, 路表温度, 网格化感知, 聚类算法

Abstract:

In order to realize high-precision prediction of road surface temperature, considering the influence of the road environment and the characteristics of the road structure in the longitudinal direction, a gridding monitoring method for dividing the asphalt pavement road surface temperature of the weather type was proposed, and conducted data mining and analysed based on a large amount of measured data of the test road section. Two perceptual network models (Euclidean distance model and correlation distance model) were established according to the logic of two different distance functions of the hierarchical clustering algorithm, the prediction accuracy of the model was validated by the measured data, and the evaluation and comparison of performance of the models were carried out by the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE), based on which the applicability of the two models was discussed. By comparing estimated value and measured value, the results show that the gridding monitoring method proposed is sensitive to weather condition, the MAPE of the models is less than 5% on cloudy and overcast weather, and the maximum MAPE is 5.43% on clear weather. The RMSE of the model reach maximum value of 1.2 ℃ in clear weather and is less than 1 ℃ in other weather condition.

Key words: road engineering, pavement surface temperature, sensing gridding, clustering algorithm

中图分类号: 

  • U416.2

图1

路域的网格化示意图"

图2

网格化感知模型的实现路径"

图3

聚类阈值搜索原理示意图"

图4

截断阈值选取示意图"

图5

路表温度观测路段和网格划分"

表1

各单元方差"

天气模式单元1单元2单元3单元4单元5单元6单元7单元8单元9单元10
中性1.1710.5840.5831.0720.4790.7890.8690.7070.9151.118
极端0.6240.3800.3950.9560.2550.2940.4210.3820.3591.010
抑制2.1481.3811.5001.9751.3681.7311.6041.4681.6842.151

图6

中性天气的聚类"

图7

极端天气的聚类"

图8

抑制天气的聚类"

图9

欧氏距离模型效果偏离图"

图10

欧氏距离模型误差"

图11

相关系数模型效果偏离图"

图12

相关系数模型误差"

图13

各模型在不同天气状况下的误差对比"

表2

不同论文的路表温度预测误差对比"

方法相关系数均方差/标准差均方根误差残差均值平均绝对误差平均绝对百分比误差
谈至明12-0.85~0.99-0.36~0.24--
庄传仪[13]0.897~0.9822.443----
杨书杰17--1.18~1.86---
林子静220.96-1.70.09--
王可心23--1.09-0.68-
本文0.937~0.986-0.623~0.75-0.4813.53
1 刘状壮, 沙爱民, 蒋玮. 蓄盐沥青路面研究进展:盐化物材料、混合料及其性能与评价[J]. 中国公路学报, 2019, 32(4): 18-31.
Liu Zhuang-zhuang, Sha Ai-min, Jiang Wei. Advances in asphalt pavements containing salts:additives, mixtures,performances,and evaluation[J]. China Journal of Highway and Transport, 2019, 32(4): 18-31.
2 刘状壮, 张有为, 季鹏宇, 等. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报:工学版, 2023, 53(2): 523-530.
Liu Zhuang-zhuang, Zhang You-wei, Ji Peng-yu, et al. Study on heat transfer characteristics of electric heating snow melting[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
3 Kwon T J, Fu Li-ping. Spatiotemporal variability of road weather conditions and optimal RWIS density— an empirical investigation[J]. Canadian Journal of Civil Engineering, 2017, 44(9): 691-699.
4 Jin P J, Walker A, Cebelak M, et al. Determining strategic locations for environmental sensor stations with weather-related crash data[J]. Transportation Research Record, 2014(2440): 34-42.
5 Kwon T J, Fu Li-ping, Melles S J. Location optimization of road weather information system (RWIS) network considering the needs of winter road maintenance and the traveling public[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(1): 57-71.
6 Biswas S, Wu Ming-jian, Melles S J, et al. Use of topography, weather zones, and semivariogram parameters to optimize road weather information system station density across large spatial scales[J]. Transportation Research Record, 2019, 2673(12): 301-311.
7 Feng Feng, Fu Li-ping. Winter road surface condition forecasting[J]. Journal of Infrastructure Systems, 2015, 21(3): No. 04014049.
8 张昌利, 孟颖, 温立民, 等. 面向CPS的高速公路凝冰短时预测与主动式防冰控制[J]. 北京交通大学学报, 2017, 41(3): 47-54.
Zhang Chang-li, Meng Ying, Wen Li-min, et al. CPS-oriented short-term icing events prediction and proactive anti-ice control for highway systems[J]. Journal of Beijing Jiaotong University, 2017, 41(3): 47-54.
9 Gu Lian, Wu Ming-jian, Kwon T J. An enhanced spatial statistical method for continuous monitoring of winter road surface conditions[J]. Canadian Journal of Civil Engineering, 2020, 47(10): 1154-1165.
10 Hermansson A. Simulation model for calculating pavement temperatures including maximum temperature[J]. Pavement Management and Monitoring: Pavement Design, Management, and Performance, 2000, 1699(1): 134-141.
11 陈嘉祺, 罗苏平, 李亮, 等. 沥青路面温度场分布规律与理论经验预估模型[J]. 中南大学学报:自然科学版, 2013, 44(4): 1647-1656.
Chen Jia-qi, Luo Su-ping, Li Liang, et al. Temperature distribution and method-experience prediction model of asphalt pavement[J]. Journal of Central South University(Science and Technology), 2013, 44(4): 1647-1656.
12 谈至明, 马正军, 邹晓翎. 基于路表实测温度的路面温度场估计模型[J]. 同济大学学报:自然科学版, 2013, 41(5): 700-704.
Tan Zhi-ming, Ma Zheng-jun, Zou Xiao-ling. Pavement temperature estimation model based on field temperature data[J]. Journal of Tongji University(Natural Science), 2013, 41(5): 700-704.
13 庄传仪, 王林, 申爱琴, 等. 沥青路面路表温度预估模型研究[J]. 公路交通科技, 2010, 27(3): 39-43, 48.
Zhuang Chuan-yi, Wang Lin, Shen Ai-qin, et al. Prediction model of surface temperature of asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2010, 27(3): 39-43, 48.
14 Khan Z H, Islam M R, Tarefder R A. Determining asphalt surface temperature using weather parameters[J]. Journal of Traffic and Transportation Engineering—English Edition, 2019, 6(6): 577-588.
15 Liu Bo, Yan Shuo, You Huan-ling, et al. Road surface temperature prediction based on gradient extreme learning machine boosting[J]. Computers in Industry, 2018, 99: 294-302.
16 Tabrizi S E, Xiao K, The J V, et al. Hourly road pavement surface temperature forecasting using deep learning models[J]. Journal of Hydrology, 2021, 603: No. 126877.
17 杨书杰, 彭嫣. 基于机器学习的路表温度预估方法研究[J]. 交通科技, 2022(2): 5-8.
Yang Shu-jie, Peng Yan. Research on road surface temperature estimation method based on machine learning[J]. Transportation Science & Technology, 2022(2): 5-8.
18 Fujimoto A, Akira S, Teruyuki F, et al. Heat transfer analysis on road surface temperature near a traffic light[C]∥17th ITS World Congress, Busan, Korea, South, 2010: No. 01354757.
19 Gustavsson T. A study of air and road-surface temperature variations during clear windy nights[J]. International Journal of Climatology, 2010, 18(8): 919-932.
20 Rodriguez M Z, Comin C H, Casanova D, et al. Clustering algorithms: a comparative approach[J]. PLoS ONE, 2016, 14(1): 1-34.
21 Trevor H, Robert T, Jerome F. The Elements of Statistical Learning[M]. Berlin: Springer-verlag, 2003.
22 林子静, 胡继超, 朱承瑛. 高速公路路面夜间逐时温度预报方法研究[J]. 公路交通科技, 2021, 38(8): 23-29.
Lin Zi-Jing, Hu Ji-chao, Song Cheng-ying. A method for forecasting hourly expressway surface temperature during night time[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 23-29.
23 王可心, 包云轩, 朱承瑛, 等. 随机森林回归法在冬季路面温度预报中的应用[J]. 气象, 2021, 47(1): 82-93.
Wang Ke-xin, Bao Yun-xuan, Zhu Cheng-ying, et al. Forecasts of road surface temperature in winter based on random forests regression[J]. Meteorological Monthly, 2021, 47(1): 82-93.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[6] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[7] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[8] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[9] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[10] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[11] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[12] 康耀龙,冯丽露,张景安,曹素娥. 基于谱聚类的不确定数据集中快速离群点挖掘算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1181-1186.
[13] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[14] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[15] 陈栩,曹超飞,尚静,黄明星,艾长发,任东亚. 动静水环境作用下级配离析对沥青混合料水损害的影响评价[J]. 吉林大学学报(工学版), 2023, 53(1): 210-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!