吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1853-1860.doi: 10.13229/j.cnki.jdxbgxb.20230074
• 交通运输工程·土木工程 • 上一篇
Bo LI1,2(),Xin LI1,Hong RUI3,Yuan LIANG1
摘要:
针对高铁隧道口边坡位移监测数据非平稳、非线性的特点,以及极限学习机(ELM)模型起始参数随机生成导致预测性能不佳等问题,建立了基于变分模态分解(VMD)和灰狼优化算法(GWO)的ELM位移预测模型VMD-GWO-ELM。首先,通过经验模态分解的自适应分解层数确定VMD的最佳分解数k,得到周期项、趋势项和波动项位移。然后,利用灰狼算法优化ELM的输入权值和隐含神经元阈值。最后,对各子序列进行预测和叠加。实例验证结果表明:本文模型的均方根误差为0.3822 mm,平均绝对百分比误差为1.0047%,拟合优度为0.9837,表明该模型具有更高的预测精度及适用性。
中图分类号:
1 | 黄华, 姜波, 罗永刚, 等.高陡边坡铁路隧道洞口危岩落石整治措施研究[J]. 高速铁路技术, 2018, 9(6): 65-69. |
Huang Hua, Jiang Bo, Luo Yong-gang, et al. Study on treatment measures for rockfall at railway tunnel portal on high and steep slope[J]. High Speed Railway Technology, 2018, 9(6): 65-69. | |
2 | 李继昀. 冻土地区铁路隧道洞口边仰坡变形研究[D]. 兰州: 兰州交通大学土木工程学院,2020. |
Li Ji-yun. Study on deformation of upward slope at tunnel portal of railway tunnel in frozen soil area[D]. Lanzhou: School of Civil Engineering, Lanzhou Jiaotong University, 2020. | |
3 | 戈海玉, 涂劲松. 边坡位移预测的非线性组合模型及应用[J]. 岩土力学, 2011, 32(6): 1808-1812. |
Ge Hai-yu, Tu Jin-song. Nonlinear coupled model for predicting slope displacement and its application[J]. Rock and Soil Mechanics, 2011, 32(6): 1808-1812. | |
4 | 张正虎, 袁孟科, 邓建辉, 等. 基于改进灰色-时序分析时变模型的边坡位移预测[J]. 岩石力学与工程学报, 2014, 33(): 3791-3797. |
Zhang Zheng-hu, Yuan Meng-ke, Deng Jian-hui, et al. Displacement prediction of slope based on improved grey-time series time-varying model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2): 3791-3797. | |
5 | 王述红, 任艺鹏, 邢观华. 一种改进AFSA-Elman边坡位移预测网络[J]. 东北大学学报: 自然科学版, 2019, 40(1): 115-120. |
Wang Shu-hong, Ren Yi-peng, Xing Guan-hua. An improved AFSA-elman slope displacement prediction network[J]. Journal of Northeastern University(Natural Science), 2019, 40(1): 115-120. | |
6 | 唐菲菲, 唐天俊, 朱洪洲, 等. 结合注意力机制和Bi-LSTM的降雨型滑坡位移预测[J]. 测绘通报, 2022(9): 74-79, 104. |
Tang Fei-fei, Tang Tian-jun, Zhu Hong-zhou, et al. Rainfall landslide deformation prediction based on attention mechanism and Bi-LSTM[J]. Bulletin of Surveying and Mapping, 2022(9): 74-79, 104. | |
7 | 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669. |
Deng Dong-mei, Liang Ye, Wang Liang-qing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression—a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669. | |
8 | 金爱兵, 张静辉, 孙浩, 等. 基于SSA-SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报: 自然科学版, 2022, 50(11): 142-148. |
Jin Ai-bing, Zhang Jing-hui, Sun Hao, et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(11): 142-148. | |
9 | 汪磊, 谢彦初, 孙德安, 等. 基于GS-SVM的膨胀土边坡防护工程健康预测模型[J]. 中南大学学报: 自然科学版, 2022, 53(1): 250-257. |
Wang Lei, Xie Yan-chu, Sun De-an, et al. Health prediction model of expansive soil slope protection works based on GS-SVM[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 250-257. | |
10 | 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680. |
Zhou Chao, Yin Kun-long, Huang Fa-ming. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36(9): 2674-2680. | |
11 | 高彩云, 高宁. 改进极限学习机的不同类型滑坡位移预测[J]. 西安科技大学学报, 2018, 38(4): 683-689. |
Gao Cai-yun, Gao Ning. Various types of landslide displacement prediction based on improved extreme learning machine[J]. Journal of Xi'an University of Science and Technology, 2018, 38(4): 683-689. | |
12 | Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning & Cybernetics, 2011, 2(2): 107-122. |
13 | 蔡改贫, 刘鑫, 罗小燕, 等. 基于多尺度模糊熵和改进极限学习机的球磨机负荷状态识别[J]. 吉林大学学报: 工学版, 2020, 50(6): 2055-2067. |
Cai Gai-pin, Liu Xin, Luo Xiao-yan,et al. Load state identification method for ball mills based on modified multiscale fuzzy entropy and improved extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2055-2067. | |
14 | 李骅锦, 许强, 何雨森, 等. "阶跃式"滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型[J]. 岩石力学与工程学报, 2017, 36(): 4075-4084. |
Li Hua-jin, Xu Qiang, He Yu-sen, et al. An ARMA-(LASSO-ELM)-Copula framework for landslide displacement prediction and threshold computing of the displacement of step-like landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup.2): 4075-4084. | |
15 | 温廷新, 朱静. 基于SAPSO-ELM的边坡稳定性预测[J].安全与环境学报, 2018, 18(6): 2146-2150. |
Wen Ting-xin, Zhu Jing. On the prediction for the slope stability based on the SAPSO-ELM[J]. Journal of Safety and Environment, 2018, 18(6): 2146-2150. | |
16 | 曹博, 汪帅, 宋丹青, 等. 基于蚁群算法优化极限学习机模型的滑坡位移预测[J]. 水资源与水工程学报, 2022, 33(2): 172-178. |
Cao Bo, Wang Shuai, Song Dan-qing, et al. Landslide displacement prediction based on extreme learning machine optimized by ant colony algorithm[J]. Journal of water resources & water engineering, 2022, 33(2): 172-178. | |
17 | Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61. |
18 | 任超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J]. 测绘科学技术学报, 2014, 31(6): 551-555. |
Ren Chao, Liang Yue-ji, Pang Guang-feng, et al. Empirical mode decomposition and genetic wavelet neural network method for slope deformation prediction[J]. Journal of Surveying and Mapping Science and Technology, 2014, 31(6): 551-555. | |
19 | Dragomiretskiy K, Zosso D. Variational mode de-composition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
20 | 王进花, 胡佳伟, 曹洁, 等. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 318-328. |
Wang Jin-hua, Hu Jia-wei, Cao Jie,et al. Multi-fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328. | |
21 | 徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. |
Xu Feng, Fan Chun-ju, Xu Xun-jian, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395. | |
22 | Huang G B, Zhu Q Y, Siew C. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
23 | 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65. |
Zhang Na, Ren Qiang, Liu Guang-chen, et al. Short-term PV power forecasting based on VMD-GWO-ELMAN[J]. China Electric Power, 2022, 55(5): 57-65. | |
24 | 刘辉, 李侯君, 刘雨薇, 等. 基于VMD和GWO-SVR的电力负荷预测方法[J]. 现代电子技术, 2020, 43(23): 167-172. |
Liu Hui, Li Hou-jun, Liu Yu-wei, et al. Power load forecasting method based on VMD and GWO⁃SVR[J]. Modern Electronic Technology, 2020, 43(23): 167-172. |
[1] | 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052. |
[2] | 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088. |
[3] | 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077. |
[4] | 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808. |
[5] | 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549. |
[6] | 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798. |
[7] | 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772. |
[8] | 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818. |
[9] | 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728. |
[10] | 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735. |
[11] | 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579. |
[12] | 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764. |
[13] | 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789. |
[14] | 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755. |
[15] | 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389. |
|