吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1853-1860.doi: 10.13229/j.cnki.jdxbgxb.20230074

• 交通运输工程·土木工程 • 上一篇    

基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测

李博1,2(),李欣1,芮红3,梁媛1   

  1. 1.大连交通大学 交通运输工程学院,辽宁 大连 116028
    2.大连交通大学 辽宁省高寒地区高铁技术工程研究中心,辽宁 大连 116028
    3.郑州铁路职业技术学院 电气工程学院,郑州 450002
  • 收稿日期:2023-01-28 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:李博(1975-),女,副教授.研究方向:交通运输安全.E-mail:libo116028@djtu.edu.cn
  • 基金资助:
    辽宁省教育厅科学研究项目(LJKZ0507)

Displacement prediction of tunnel entrance slope based on variational modal decomposition and grey wolf optimized extreme learning machine

Bo LI1,2(),Xin LI1,Hong RUI3,Yuan LIANG1   

  1. 1.School of Traffic and Transportation Engineering,Dalian Jiaotong University,Dalian 116028,China
    2.Liaoning Province Engineering Research Center of High-speed Railway Technology in High Cold Region,Dalian Jiaotong University,Dalian 116028,China
    3.School of Electrical Engineering,Zhengzhou Railway Vocational & Technical College,Zhengzhou 450002,China
  • Received:2023-01-28 Online:2023-06-01 Published:2023-07-23

摘要:

针对高铁隧道口边坡位移监测数据非平稳、非线性的特点,以及极限学习机(ELM)模型起始参数随机生成导致预测性能不佳等问题,建立了基于变分模态分解(VMD)和灰狼优化算法(GWO)的ELM位移预测模型VMD-GWO-ELM。首先,通过经验模态分解的自适应分解层数确定VMD的最佳分解数k,得到周期项、趋势项和波动项位移。然后,利用灰狼算法优化ELM的输入权值和隐含神经元阈值。最后,对各子序列进行预测和叠加。实例验证结果表明:本文模型的均方根误差为0.3822 mm,平均绝对百分比误差为1.0047%,拟合优度为0.9837,表明该模型具有更高的预测精度及适用性。

关键词: 道路工程, 隧道口边坡, 位移预测, 变分模态分解, 灰狼优化极限学习机

Abstract:

In view of the non-stationary and nonlinear characteristics of the slope displacement monitoring data of high-speed railway tunnel entrance and the poor prediction performance caused by random generation of initial parameters of extreme learning machine (ELM) model, an ELM displacement prediction model based on variational mode decomposition (VMD) and grey wolf optimizer (GWO) was established. The optimal decomposition number of VMD was determined by the adaptive decomposition layers of Empirical Mode Decomposition, and the displacement of periodic term, trend term and wave term were obtained by VMD. The GWO was used to search for the optimal weight matrix connecting the input and hidden layers and the threshold of the hidden layer neurons of ELM. Each subsequence was predicted and the cumulative displacement was obtained by combining the results. Example verification shows that the root-mean-square error, mean absolute percentage error and goodness of fit of VMD-GWO-ELM model are 0.3822 mm, 1.0047% and 0.9837, respectively. The VMD-GWO-ELM model has higher prediction accuracy and applicability.

Key words: road engineering, tunnel entrance slope, displacement prediction, variational mode decomposition, grey wolf optimized extreme learning machine

中图分类号: 

  • X928.03

图1

监测点布置图"

图2

边坡位移曲线"

图3

EMD分解结果"

图4

VMD分解结果"

图5

VMD-GWO-ELM模型位移预测流程图"

图6

ELM预测结果"

图7

GWO-ELM测试集预测结果"

图8

VMD-GWO-ELM测试集预测结果"

表1

预测模型评价指标"

预测模型RMSE/mmMAPE/%R2
ELM1.58833.66550.8767
GWO-ELM0.94352.51790.9520
VMD-GWO-ELM0.38221.00470.9837
1 黄华, 姜波, 罗永刚, 等.高陡边坡铁路隧道洞口危岩落石整治措施研究[J]. 高速铁路技术, 2018, 9(6): 65-69.
Huang Hua, Jiang Bo, Luo Yong-gang, et al. Study on treatment measures for rockfall at railway tunnel portal on high and steep slope[J]. High Speed Railway Technology, 2018, 9(6): 65-69.
2 李继昀. 冻土地区铁路隧道洞口边仰坡变形研究[D]. 兰州: 兰州交通大学土木工程学院,2020.
Li Ji-yun. Study on deformation of upward slope at tunnel portal of railway tunnel in frozen soil area[D]. Lanzhou: School of Civil Engineering, Lanzhou Jiaotong University, 2020.
3 戈海玉, 涂劲松. 边坡位移预测的非线性组合模型及应用[J]. 岩土力学, 2011, 32(6): 1808-1812.
Ge Hai-yu, Tu Jin-song. Nonlinear coupled model for predicting slope displacement and its application[J]. Rock and Soil Mechanics, 2011, 32(6): 1808-1812.
4 张正虎, 袁孟科, 邓建辉, 等. 基于改进灰色-时序分析时变模型的边坡位移预测[J]. 岩石力学与工程学报, 2014, 33(): 3791-3797.
Zhang Zheng-hu, Yuan Meng-ke, Deng Jian-hui, et al. Displacement prediction of slope based on improved grey-time series time-varying model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2): 3791-3797.
5 王述红, 任艺鹏, 邢观华. 一种改进AFSA-Elman边坡位移预测网络[J]. 东北大学学报: 自然科学版, 2019, 40(1): 115-120.
Wang Shu-hong, Ren Yi-peng, Xing Guan-hua. An improved AFSA-elman slope displacement prediction network[J]. Journal of Northeastern University(Natural Science), 2019, 40(1): 115-120.
6 唐菲菲, 唐天俊, 朱洪洲, 等. 结合注意力机制和Bi-LSTM的降雨型滑坡位移预测[J]. 测绘通报, 2022(9): 74-79, 104.
Tang Fei-fei, Tang Tian-jun, Zhu Hong-zhou, et al. Rainfall landslide deformation prediction based on attention mechanism and Bi-LSTM[J]. Bulletin of Surveying and Mapping, 2022(9): 74-79, 104.
7 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669.
Deng Dong-mei, Liang Ye, Wang Liang-qing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression—a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669.
8 金爱兵, 张静辉, 孙浩, 等. 基于SSA-SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报: 自然科学版, 2022, 50(11): 142-148.
Jin Ai-bing, Zhang Jing-hui, Sun Hao, et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(11): 142-148.
9 汪磊, 谢彦初, 孙德安, 等. 基于GS-SVM的膨胀土边坡防护工程健康预测模型[J]. 中南大学学报: 自然科学版, 2022, 53(1): 250-257.
Wang Lei, Xie Yan-chu, Sun De-an, et al. Health prediction model of expansive soil slope protection works based on GS-SVM[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 250-257.
10 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
Zhou Chao, Yin Kun-long, Huang Fa-ming. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36(9): 2674-2680.
11 高彩云, 高宁. 改进极限学习机的不同类型滑坡位移预测[J]. 西安科技大学学报, 2018, 38(4): 683-689.
Gao Cai-yun, Gao Ning. Various types of landslide displacement prediction based on improved extreme learning machine[J]. Journal of Xi'an University of Science and Technology, 2018, 38(4): 683-689.
12 Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning & Cybernetics, 2011, 2(2): 107-122.
13 蔡改贫, 刘鑫, 罗小燕, 等. 基于多尺度模糊熵和改进极限学习机的球磨机负荷状态识别[J]. 吉林大学学报: 工学版, 2020, 50(6): 2055-2067.
Cai Gai-pin, Liu Xin, Luo Xiao-yan,et al. Load state identification method for ball mills based on modified multiscale fuzzy entropy and improved extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2055-2067.
14 李骅锦, 许强, 何雨森, 等. "阶跃式"滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型[J]. 岩石力学与工程学报, 2017, 36(): 4075-4084.
Li Hua-jin, Xu Qiang, He Yu-sen, et al. An ARMA-(LASSO-ELM)-Copula framework for landslide displacement prediction and threshold computing of the displacement of step-like landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup.2): 4075-4084.
15 温廷新, 朱静. 基于SAPSO-ELM的边坡稳定性预测[J].安全与环境学报, 2018, 18(6): 2146-2150.
Wen Ting-xin, Zhu Jing. On the prediction for the slope stability based on the SAPSO-ELM[J]. Journal of Safety and Environment, 2018, 18(6): 2146-2150.
16 曹博, 汪帅, 宋丹青, 等. 基于蚁群算法优化极限学习机模型的滑坡位移预测[J]. 水资源与水工程学报, 2022, 33(2): 172-178.
Cao Bo, Wang Shuai, Song Dan-qing, et al. Landslide displacement prediction based on extreme learning machine optimized by ant colony algorithm[J]. Journal of water resources & water engineering, 2022, 33(2): 172-178.
17 Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
18 任超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J]. 测绘科学技术学报, 2014, 31(6): 551-555.
Ren Chao, Liang Yue-ji, Pang Guang-feng, et al. Empirical mode decomposition and genetic wavelet neural network method for slope deformation prediction[J]. Journal of Surveying and Mapping Science and Technology, 2014, 31(6): 551-555.
19 Dragomiretskiy K, Zosso D. Variational mode de-composition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
20 王进花, 胡佳伟, 曹洁, 等. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 318-328.
Wang Jin-hua, Hu Jia-wei, Cao Jie,et al. Multi-fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
21 徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395.
Xu Feng, Fan Chun-ju, Xu Xun-jian, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395.
22 Huang G B, Zhu Q Y, Siew C. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
23 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65.
Zhang Na, Ren Qiang, Liu Guang-chen, et al. Short-term PV power forecasting based on VMD-GWO-ELMAN[J]. China Electric Power, 2022, 55(5): 57-65.
24 刘辉, 李侯君, 刘雨薇, 等. 基于VMD和GWO-SVR的电力负荷预测方法[J]. 现代电子技术, 2020, 43(23): 167-172.
Liu Hui, Li Hou-jun, Liu Yu-wei, et al. Power load forecasting method based on VMD and GWO⁃SVR[J]. Modern Electronic Technology, 2020, 43(23): 167-172.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
[5] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[6] 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798.
[7] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[8] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[9] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[10] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[11] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[12] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[13] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[14] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[15] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!