吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1799-1808.doi: 10.13229/j.cnki.jdxbgxb.20221208

• 交通运输工程·土木工程 • 上一篇    

影响智能骨料感知的关键因素及数据分析方法

王宁1(),马涛1,陈丰1(),付永强2   

  1. 1.东南大学 交通学院,南京 211189
    2.滨湖区蠡湖街道办事处,江苏 无锡 214000
  • 收稿日期:2022-09-18 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 陈丰 E-mail:wangning11@seu.edu.cn;fengc@seu.edu.cn
  • 作者简介:王宁(1993-),男,博士研究生.研究方向:路面结构健康监测.E-mail:wangning11@seu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(52208430);江苏省自然科学基金项目(SBK202104);江苏省双创计划项目(JSSCBS20210058);江苏省自然科学基金青年基金项目(SBK2021042206);江苏省研究生科研与实践创新计划项目(KYCX22_0269)

Key factors affecting smart aggregate perception and data analysis methods

Ning WANG1(),Tao MA1,Feng CHEN1(),Yong-qiang FU2   

  1. 1.School of Transportation,Southeast University,Nanjing 211189,China
    2.Lihu Street Office,Binhu District,Wuxi 214000,China
  • Received:2022-09-18 Online:2023-06-01 Published:2023-07-23
  • Contact: Feng CHEN E-mail:wangning11@seu.edu.cn;fengc@seu.edu.cn

摘要:

为研究不同荷载作用形式、封装材料和形状特性对智能骨料传感器监测结果的影响,实现基于传感器感知参数对混合料介质物理力学特征的有效评价,对埋入式智能骨料传感器SmartRock的室内二次标定进行了试验,构建了传感器-混合料介质耦合三维有限元数值模型,并开展了基于SmartRock传感器的水泥稳定碎石旋转压实和无侧限抗压强度试验。结果表明:集中荷载作用下的传感器应力响应远大于均布荷载;传感器高度与底面边长的比值H/D<0.3,埋入式传感器封装材料与周围介质模量的比值Ep/Em>5时,匹配误差可保持在较低且稳定的水平;可通过分析SmartRock传感器应力响应的离散系数Sv表征混合料压实度及强度的演化规律。

关键词: 道路工程, 水泥稳定碎石, 智能感知, 匹配误差, 埋入式传感器

Abstract:

In order to investigate the influences of factors such as load form, packaging material and shape characteristics on the monitoring results of the SmartRock sensor, so as to provide an effective way for evaluation of the physical and mechanical properties of the mixture media based on sensor parameters. Firstly, the indoor secondary calibration tests of the SmartRock sensor were carried out; secondly, 3D finite element numerical modelling of the embedded sensor-mixture medium coupling were used to study the matching error. In addition, the gyratory compaction and unconfined compressive strength tests of cement stabilized macadams with the SmartRock sensor were performed, and the sensor responses were analyzed. The results show that the stress response of SmartRock under concentrated load is much greater than that of a uniform load; provided the ratio of sensor height to bottom side length H/D is less than 0.3 and the ratio of the sensor package material to the modulus of the surrounding medium Ep/Em is greater than 5, a low and stable matching error can be achieved; in addition, the evolution of the compaction degree and strength of the mixture can be characterized by the dispersion coefficient Sv of the stress response of SmartRock.

Key words: road engineering, cement stabilized aggregates, intelligent sensing, matching errors, embedded sensor

中图分类号: 

  • U416.2

图1

SmartRock传感器及无线通讯装置"

图2

压阻式压力传感器示意图"

图3

SmartRock传感器标定试验"

图4

SmartRock传感器标定装置"

图5

外荷载及不同接触面积下SmartRock输出电压曲线"

图6

不同荷载形式作用于埋入式传感器示意图"

图7

混合料介质-埋入式传感器耦合3D有限元模型及网格划分"

图8

传感器与混合料介质不同模量比的匹配误差曲线"

图9

埋入式传感器表面非均匀应力分布"

图10

传感器不同厚径比的匹配误差曲线"

图11

水泥稳定碎石级配曲线"

图12

基于SmartRock传感器的旋转压实及无侧限抗压强度试验"

图13

旋转压实过程中混合料相对密实度及SmartRock应力响应曲线"

图14

旋转压实过程中SmartRock应力响应波动性分析"

图15

无侧限抗压强度试验过程中轴向荷载及SmartRock应力响应曲线"

图16

无侧限抗压强度试验过程中SmartRock应力响应波动性分析"

1 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66.
Editorial department of China highway journal of highway and transport. Summary of academic research on pavement engineering in China·2020[J]. China Highway Journal, 2020, 33(10): 1-66.
2 张立祥, 罗强, 张良,等. 土压力传感器在硬土介质中的非线性响应分析[J]. 岩土力学, 2013, 34(12): 3633-3640.
Zhang Li-xiang, Luo Qiang, Zhang Liang, et al. Nonlinear response analysis of earth pressure sensor in hard soil[J]. Geotechnical Mechanics, 2013, 34(12): 3633-3640.
3 刘荣梅, 赵振, 白树伟. 埋入式光纤智能复合材料简化界面的应变传递分析[J]. 材料导报, 2021, 35(20): 20161-20165.
Liu Rong-mei, Zhao Zhen, Bai Shu-wei. Strain transfer analysis at simplified Interface of embedded optical fiber intelligent composites[J]. Materials Review, 2021, 35(20): 20161-20165.
4 Xiang P, Wang H. Optical fibre-based sensors for distributed strain monitoring of asphalt pavements[J]. International Journal of Pavement Engineering, 2018, 19(9): 842-850.
5 刘朝晖, 夏红卫, 柳力. 埋入式传感器与沥青混合料的交互影响研究[J]. 长沙理工大学学报:自然科学版, 2021, 18(1): 1-6.
Liu Zhao-hui, Xia Hong-wei, Liu Li. Interaction between embedded sensors and asphalt mixture[J]. Journal of Changsha University of Science and Technology (Natural Science Edition), 2021, 18(1): 1-6.
6 谭忆秋, 董泽蛟, 田庚亮, 等. 光纤光栅传感器与沥青混合料协同变形评价方法[J]. 土木建筑与环境工程, 2009, 31(2): 100-104.
Tan Yi-qiu, Dong Ze-jiao, Tian Geng-liang, et al. Evaluation method for synergistic deformation of fiber grating sensor and asphalt mixture[J]. Civil Engineering and Environmental Engineering, 2009, 31(2): 100-104.
7 郑钟铭, 国旗, 吴娜,等. 基于波片棱镜组合能量调节的切趾光纤光栅[J]. 吉林大学学报:信息科学版, 2020, 38(5): 523-528.
Zheng Zhong-ming, Guo Qi, Wu Na, et al. Fiber bragg grating with cut toe based on waveplate prisms combined energy regulation[J]. Journal of Jilin University(Information Science Edition), 2020, 38(5): 523-528.
8 张浩, 李俊杰, 康飞. 基于压电智能骨料的混凝土梁裂缝损伤监测研究[J]. 振动与冲击, 2021, 40(21): 215-222.
Zhang Hao, Li Jun-jie, Kang Fei. Research on crack damage monitoring of concrete beams based on piezoelectric smart aggregate[J]. Vibration and Impact, 2021, 40(21): 215-222.
9 张楠, 霍羽. 煤矿环境下人员移动无线传感器节点协同定位算法[J]. 吉林大学学报:工学版, 2022, 52(5):1168-1173.
Zhang Nan, Huo Yu. Collaborative location algorithm of personnel mobile wireless sensor nodes in coal mine environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5):1168-1173.
10 Dan H C, Yang D, Liu X, et al. Experimental investigation on dynamic response of asphalt pavement using smartrock sensor under vibrating compaction loading[J]. Construction and Building Materials, 2020, 247: No.118592.
11 Wang X, Shen S, Huang H, et al. Characterization of particle movement in superpave gyratory compactor at meso-scale using smartrock sensors[J]. Construction and Building Materials, 2018, 175: 206-214.
12 Wang N, Han T, Cheng H, et al. Monitoring structural health status of asphalt pavement using intelligent sensing technology[J]. Construction and Building Materials, 2022, 352: No. 129025.
13 侯爽, 雷晋芳, 欧进萍. 基于压电智能骨料的沥青混凝土路面车辆动态荷载监测[J]. 振动与冲击, 2014, 33(4): 42-47.
Hou Shuang, Lei Jin-fang, Jin-ping Ou. Dynamic vehicle load monitoring of asphalt concrete pavements based on piezoelectric smart aggregates[J]. Vibration and Impact, 2014, 33(4): 42-47.
14 Asadi P, Mehrabi H, Asadi A, et al. Deep convolutional neural networks for pavement crack detection using an inexpensive global shutter RGB-D sensor and ARM-based single-board computer[J]. Transportation Research Record, 2021, 2675(9): 885-897.
15 Pan Y, Zhang X, Cervone G, et al. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3701-3712.
16 Di Graziano A, Marchetta V, Cafiso S. Structural health monitoring of asphalt pavements using smart sensor networks: a comprehensive review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(5): 639-651.
17 Rys D, Burnos P. Study on the accuracy of axle load spectra used for pavement design[J]. International Journal of Pavement Engineering, 2022, 23(11): 3706-3715.
18 Al Khateeb L, Tang T, Erkens S, et al. Effect of fiber bragg grating sensors installation on pavement responses[C]∥Advances in Materials and Pavement Performance Prediction, Florida, USA, 2018: 79-82.
19 Chen C, Chandra S, Han Y, et al. Deep learning-based thermal image analysis for pavement defect detection and classification considering complex pavement conditions[J]. Remote Sensing, 2021, 14(1): 106-123.
20 Skar A, Levenberg E, Andersen S, et al. Analysis of a moving measurement platform based on line profile sensors for project-level pavement evaluation[J]. Road Materials and Pavement Design, 2021, 22(9): 2069-2085.
21 Cheng Z, Zhang D, Xie S, et al. Smartrock-based research on gyratory locking point for stone mastic asphalt mixture[J]. Buildings, 2022, 12(2): 97-113.
22 Wang N, Chen F, Ma T, et al. Compaction performance of cold recycled asphalt mixture using smartrock sensor[J]. Automation in Construction, 2022, 140: No. 104377.
23 卢鹏. 新型MEMS压阻式压力传感器的设计[D]. 重庆: 电子科技大学机械与电器工程学院,2021.
Lu Peng. Design of a new MEMS piezoresistive pressure sensor[D]. Chongqing: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology, 2021.
24 曾辉. 岩土应力传感器匹配系数的等效性和真实性[C]∥水电与矿业工程中的岩石力学问题——中国北方岩石力学与工程应用学术会议文集, 郑州, 中国, 1991: 796-803.
25 曾辉, 余尚江. 岩土压力传感器匹配误差的特性[J]. 岩土力学, 2004, 25(12): 2003-2006.
Zeng Hui, Yu Shang-jiang. Characterization of matching errors in geotechnical pressure sensors [J]. Geotechnics, 2004, 25(12): 2003-2006.
26 朱元广, 刘泉声, 蒋景东,等. 水泥砂浆体中三向压力传感器的测量特性[J]. 岩石力学与工程学报, 2015, 34(9): 1877-1885.
Zhu Yuan-guang, Liu Quan-shing, Jiang Jing-dong, et al. Measurement characteristics of three-way pressure sensors in cement mortar bodies[J]. Journal of Rock Mechanics and Engineering, 2015, 34(9): 1877-1885.
27 . 公路工程沥青及沥青混合料试验规程 [S].
28 Butcher M. Determining gyratory compaction characteristics using servopac gyratory compactor[J]. Transportation Research Record, 1998, 1630(1): 89-97.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798.
[6] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[7] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[8] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[9] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[10] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[11] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[12] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[13] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[14] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[15] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!