吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1809-1818.doi: 10.13229/j.cnki.jdxbgxb.20221376

• 交通运输工程·土木工程 • 上一篇    

改性石灰土在干湿和冻融循环下的无侧限抗压性能

姜屏1,2(),陈业文2,陈先华1(),张伟清2,3,李娜2,王伟2   

  1. 1.东南大学 交通学院,南京 210096
    2.绍兴文理学院 土木工程学院,浙江 绍兴 312000
    3.广东省建筑设计研究院有限公司,广州 510010
  • 收稿日期:2022-10-27 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 陈先华 E-mail:jiangping@usx.edu.cn;chenxh@seu.edu.cn
  • 作者简介:姜屏(1985-),男,副教授,博士.研究方向:废弃土料再生利用.E-mail:jiangping@usx.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LQ20E080005)

Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles

Ping JIANG1,2(),Ye-wen CHEN2,Xian-hua CHEN1(),Wei-qing ZHANG2,3,Na LI2,Wei WANG2   

  1. 1.School of Transportation,Southeast University,Nanjing 210096,China
    2.School of Civil Engineering,Shaoxing University,Shaoxing 312000,China
    3.Guangdong Architectural Design and Research Institute Co. ,Ltd. ,Guangzhou 510010,China
  • Received:2022-10-27 Online:2023-06-01 Published:2023-07-23
  • Contact: Xian-hua CHEN E-mail:jiangping@usx.edu.cn;chenxh@seu.edu.cn

摘要:

为进一步提升在复杂环境工程中石灰土的适用性和安全性,利用纳米粘土和纤维改性石灰土的力学性能。通过分析改性石灰土在干湿循环和冻融循环作用下的无侧限抗压性能,从而判断纳米粘土和纤维对石灰土的改性效果。试验结果证明,纤维和纳米粘土可以提高石灰土的抗压强度和残余强度,增大破坏应变,改变破坏模式。尤其在纤维和纳米粘土的复合作用下纳米粘土/纤维改性石灰土(NFLS)呈现出最优无侧限抗压性能,并能够延缓因干湿循环和冻融循环作用导致的NFLS内部损伤。

关键词: 道路工程, 改性石灰土, 冻融循环, 干湿循环, 无侧限抗压性能

Abstract:

In order to further improve the applicability and safety of lime stabilized soil in complex environmental engineering, the mechanical properties of lime stabilized soil modified by nano clay and fiber were studied. By analyzing the unconfined compression behavior of modified lime stabilized soil under the action of dry wet cycle and freeze-thaw cycle, the modified effect of nano clay and fiber on lime stabilized soil can be judged. The test results show that fiber and nano clay can improve the compressive strength and residual strength of lime stabilized soil, increase the failure strain and change the failure mode. Especially, under the combined action of fiber and nano clay, nano clay/fiber modified lime soil (NFLS) presents the best unconfined compression behavior, and can delay the internal damage of NFLS caused by dry wet cycle and freeze-thaw cycle.

Key words: road engineering, modified lime stabilized soil, freeze thaw cycle, dry wet cycle, unconfined compression behavior

中图分类号: 

  • TU447

图1

材料实物图"

表1

不同配比组合下改性石灰土的试验方案"

组号试样序号配比组合冻融循环次数干湿循环次数养护龄期/d
A1~5L60、1、3、5、70、1、3、5、728
B6~10L6-N6
C11~15L6-F0.5
D16~20L6-N4-F0.75

图2

试样制作过程"

图3

冻融循环作用下各配比组合的改性石灰土的应力-应变曲线"

图4

不同改性石灰土随冻融循环次数变化的无侧限抗压强度"

图5

干湿循环作用下各配比组合的改性石灰土的应力-应变曲线with the action of dry-wet cycle"

图6

不同改性石灰土无侧限抗压强度随干湿循环次数的变化"

图7

不同改性石灰土随冻融循环次数变化的残余强度"

表2

不同改性石灰土无侧限抗压强度试验中的破坏应变"

冻融循环次数L6L6-N6L6-F0.5L6-N4-F0.75
01.892.233.223.89
12.562.563.894.23
34.572.884.904.90
53.222.883.906.23
73.232.882.884.57

图8

不同改性石灰土随干湿循环次数变化的残余强度"

表3

不同改性石灰土无侧限抗压强度试验中的破坏应变"

干湿循环次数L6L6-N6L6-F0.5L6-N4-F0.75
01.892.233.223.89
12.562.563.904.23
32.902.224.573.23
52.902.564.904.24
72.562.224.574.23

表4

冻融循环下各类石灰土应变能密度 (kPa)"

冻融循环次数L6L6-N6L6-F0.5L6-N4-F0.75
016.5530.8840.1663.13
122.2931.6545.1261.84
331.4225.5237.1841.92
54.5917.3318.7737.58
72.3510.7314.5219.47

表5

干湿循环下各类石灰土应变能密度 (kPa)"

干湿循环次数L6L6-N6L6-F0.5L6-N4-F0.75
016.5530.8840.1663.13
123.5035.1850.1361.84
321.2827.7747.0565.15
514.8324.4638.9654.41
712.6523.5232.2852.42
1 Jiang P, Chen Y, Li N, et al. Strength properties and microscopic mechanism of lime and fly ash modified expandable poly styrene lightweight soil reinforced by polypropylene fiber[J]. Case Studies in Construction Materials, 2022, 17: No. e01250.
2 Jiang X, Huang Z, Ma F, et al. Analysis of strength development and soil-water characteristics of rice husk ash-lime stabilized soft soil[J]. Materials, 2019, 12(23): 3873.
3 周宇, 李国玉, 武红娟, 等. 石灰改良红层无侧限抗压强度试验研究[J]. 冰川冻土, 2021, 43(2): 535-543.
Zhou Yu, Li Guo-yu, Wu Hong-juan, et al. Experimental study on the unconfined compressive strength of lime stabilized red-mudstone[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 535-543.
4 余帆, 黄煜镔, 孙大权. 石灰土和水泥土的减水剂改性效果[J]. 建筑材料学报, 2017, 20(2): 283-287, 309.
Yu Fan, Huang Yu-bin, Sun Da-quan. Modification effect of lime soil and cement soil by water-reducing agent[J]. Journal of Building Materials, 2017, 20(2): 283-287, 309.
5 Jahandari S, Li J, Saberian M, et al. Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay[J]. GeoResJ, 2017, 13: 49-58.
6 王方婷, 程凯, 王绮烨, 等. 石灰浸泡纤维对改性土体力学性质研究[J]. 工业建筑, 2022, 52(): 343-347.
Wang Fang-ting, Cheng Kai, Wang Qi-Ye, et al. Study on mechanical properties of modified soil by lime soaked fiber[J]. Industrial Construction, 2022, 52(Sup.1): 343-347.
7 边加敏. 石灰改良膨胀土的水稳定性研究[J]. 长江科学院院报, 2016, 33(1): 77-82.
Bian Jia-min. Water stability of lime-treated expansive soil[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 77-82.
8 Nabil M, Mustapha A, Rios S. Impact of wetting—drying cycles on the mechanical properties of lime-stabilized soils[J]. International Journal of Pavement Research and Technology, 2020, 13(1): 83-92.
9 Khoury N. Moisture hysteretic behavior of fine-grained soils stabilized with lime and class C fly ash[J]. International Journal of Geomechanics, 2019, 19(9): 1-11.
10 Ying Z, Cui Y J, Benahmed N, et al. Changes of small strain shear modulus and microstructure for a lime-treated silt subjected to wetting-drying cycles[J]. Engineering Geology, 2021, 293: No. 106334.
11 Deng J, Zhao J, Zhao X, et al. Effect of glutinous rice slurry on the unconfined compressive strength of lime-treated seasonal permafrost subjected to freeze-thaw cycles[J]. KSCE Journal of Civil Engineering, 2022, 26(4): 1712-1722.
12 王绍全, 申杨凡, 何钰龙, 等. 冻融作用下石灰改良土微观特性研究[J]. 路基工程, 2015, 8(3): 75-83.
Wang Shao-quan, Shen Yang-fan, He Yu-long, et al. Study on microscopic characteristic of lime improved soil under freezing and thawing action[J]. Subgrade Engineering, 2015, 8(3): 75-83.
13 杨林, 朱金莲. TG固化土经冻融作用的变形与力学特性研究[J]. 科学技术与工程, 2015, 15(30): 175-179, 190.
Yang Lin, Zhu Jin-lian. The research of TG solidified soil deformation and mechanical properties after freeze-thaw action[J]. Science Technology and Engineering, 2015, 15(30): 175-179, 190.
14 Consoli N C, da Silva K, Rivoire A B. Compacted clay-industrial wastes blends: long term performance under extreme freeze-thaw and wet-dry conditions[J]. Applied Clay Science, 2017, 146: 404-410.
15 Yan C, Zhang Z, Jing Y. Characteristics of strength and pore distribution of lime-flyash loess under freeze-thaw cycles and dry-wet cycles[J]. Arabian Journal of Geosciences, 2017, 10(24): 1-10.
16 Dhar S, Hussain M. The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil[J]. Road Materials and Pavement Design, 2019, 20(8): 1757-1778.
17 Shen Y, Tang Y, Yin J, et al. An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement[J]. Construction and Building Materials, 2021, 294: No. 123537.
18 虢曙安. 玻璃纤维加筋石灰土抗剪强度试验研究[J]. 公路工程, 2019, 44(5): 207-209, 232.
Guo Shu-an. Experimental study on shear strength of glass fiber and lime reinforced red clay[J]. Highway Engineering, 2019, 44(5): 207-209, 232.
19 Wei L, Chai S X, Zhang H Y, et al. Mechanical properties of soil reinforced with both lime and four kinds of fiber[J]. Construction and Building Materials, 2018, 172(9): 300-308.
20 王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013(10): 174-181.
Wang De-yin, Tang Chao-sheng, Li Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013(10): 174-181.
21 赵鹏, 董英杰, 李响, 等. 界面强度对柔性环氧树脂/粘土纳米复合材料热/力学性能的影响[J]. 材料研究学报, 2022, 36(6): 454-460.
Zhao Peng, Dong Ying-jie, Li Xiang, et al. Effect of interfacial strength on thermal/mechanical properties of flexible epoxy/clay nanocomposites[J]. Chinese Journal of Materials Research, 2022, 36(6): 454-460.
22 李致远, 陈峰. 纳米粘土/环氧树脂复合材料的制备及力学性能研究[J]. 功能材料, 2021, 52(7): 7210-7214.
Li Zhi-yuan, Chen Feng. Preparation and mechanical properties of nano clay/epoxy resin composites[J]. Journal of Functional Materials, 2021, 52(7): 7210-7214.
23 Qian B, Yu W J, Lv B F, et al. Mechanical properties and micro mechanism of nano-clay-modified soil cement reinforced by recycled sand[J]. Sustainability, 2021, 13(14): No. 7758.
24 曹宝花, 赵丹妮, 许江波, 等. 纳米粘土改良黄土力学性能试验研究[J]. 建筑科学与工程学报, 2023, 40(2): 138-149.
Cao Bao-hua, Zhao Dan-ni, Xu Jiang-bo, et al. Experimental study on mechanical properties of loess improved by nano clays[J]. Journal of Architecture and Civil Engineering, 2023, 40(2): 138-149.
25 张茂花, 杨静, 刘亚静. 纳米材料对低掺量水泥土早期强度的影响[J]. 中外公路, 2015, 35(3): 239-242.
Zhang Mao-hua, Yang Jing, Liu Ya-jing. Effect of nanomaterials on early strength of soil-cement with low content[J]. Journal of China & Foreign Highway, 2015, 35(3): 239-242.
26 张茂花, 刘亚静, 杨静. 掺加纳米材料水泥土无侧限抗压强度试验研究[J]. 施工技术, 2015, 44(15): 78-81.
Zhang Mao-hua, Liu Ya-jing, Yang Jing. Research on unconfined compressive strength of soil cement with nano structured materials[J]. Construction Technology, 2015, 44(15): 78-81.
27 Wang Z C, Zhang W Q, Jiang P, et al. The elastic modulus and damage stress-strain model of polypropylene fiber and nano clay modified lime treated soil under axial load[J]. Polymers, 2022, 14(13): No. 2606.
28 Kholghifard M, Behbahani B A. Shear strength of clayey sand treated by nanoclay mixed with recycled polyester fiber[J]. Journal of Central South University, 2022, 29(1): 259-269.
29 . 公路工程无机结合料稳定材料试验规程 [S].
30 Jiang P, Chen Y, Song X, et al. Study on compressive properties and dynamic characteristics of polypropylene-fiber-and-cement-modified iron-ore tailing under traffic load[J]. Polymers, 2022, 14(10): No. 1995.
31 Huang B, Liu J. The effect of loading rate on the behavior of samples composed of coal and rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 61: 23-30.
32 张经双, 段雪雷. 冻融循环下不同龄期水泥土损伤特性和能量耗散[J]. 硅酸盐通报, 2019, 38(7): 2144-2151.
Zhang Jing-shuang, Duan Xue-lei. Effects of freeze-thaw cycles on damage characteristics and energy dissipation of soil-cement at different ages[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2144-2151.
33 刘尚俊, 胡浩, 龙海辉, 等. 硅藻土改性对沥青路面低温性能的影响[J]. 现代交通技术, 2010, 7(3): 12-14.
Liu Shang-jun, Hu Hao, Long Hai-hui, et al. Effect of asphalt mixture modified by diatomite on low temperature performance[J]. Modern Transportation Technology, 2010, 7(3): 12-14.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
[5] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[6] 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798.
[7] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[8] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[9] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[10] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[11] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[12] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[13] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[14] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[15] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!