吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2437-2464.doi: 10.13229/j.cnki.jdxbgxb.20221433

• 综述 •    下一篇

沥青-集料黏附和剥落研究进展

赵胜前1(),丛卓红2(),游庆龙1,李源1   

  1. 1.长安大学 公路学院,西安 710064
    2.长安大学 道路施工技术与装备教育部重点实验室,西安 710064
  • 收稿日期:2022-11-11 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 丛卓红 E-mail:zhaoshengqian0831@163.com;czhwh05@163.com
  • 作者简介:赵胜前(1997-),男,博士研究生.研究方向:道路材料及路面力学行为.E-mail:zhaoshengqian0831@163.com
  • 基金资助:
    国家自然科学基金项目(51308061);中国民用航空局民航机场工程技术研究中心项目(ERCAOTP20220303)

Adhesion and raveling property between asphalt and aggregate: a review

Sheng-qian ZHAO1(),Zhuo-hong CONG2(),Qing-long YOU1,Yuan LI1   

  1. 1.School of Highway,Chang′an University,Xi′an 710064,China
    2.Key Laboratory of Road Construction Technology & Equipment of Ministry of Education,Chang′an University,Xi′an 710064,China
  • Received:2022-11-11 Online:2023-09-01 Published:2023-10-09
  • Contact: Zhuo-hong CONG E-mail:zhaoshengqian0831@163.com;czhwh05@163.com

摘要:

针对沥青-集料之间的黏附性能,对国内外黏附和剥落机理、评价体系、影响因素和改善措施4个方面的研究成果进行了综述。黏附的形成和失效是涉及物理、化学、热力学及微观力学的复杂过程,界面特征受材料特性、混合料空隙、沥青膜厚及外界环境等因素影响,不同试验体系致力于开发既能模拟损伤发生过程又能评估混合料适用性的方法,进而保证路面使用寿命。最后,结合已有研究内容,对未来研究方向进行了展望。

关键词: 道路工程, 黏附和剥落, 评价方法, 影响因素, 表面能, 原子力显微镜, 分子动力学模拟

Abstract:

In view of the adhesion performance between asphalt-aggregate, the research results on the adhesion and raveling mechanism, evaluation methods, influencing factors and improvement measures in domestic and overseas are summarized. Formation and failure of adhesion are complex processes involving physics, chemistry, thermodynamics, and micromechanics. The characteristics of the interface between asphalt and aggregate are influenced by the properties of asphalt and aggregate, the void and asphalt film thickness of the mixture, and the external environment. The different test systems are dedicated to the development of methods that that can not only simulate the process of damage occurrence in the field but also provide an assessment method through which the suitability of mixtures would be estimated in designing steps and would be guaranteed during the pavements service life. Combined with the existing research contents,the future research directions of asphalt-aggregate adhesion performance and asphalt mixture moisture sensitivity are prospected.

Key words: road engineering, adhesion and raveling, evaluation methods, influence factors, surface free energy, atomic force microscopy, molecular dynamics simulation

中图分类号: 

  • U416.217

表1

沥青与集料的黏附理论"

理论内容特点
力学理论113黏附力主要由集料与渗入集料表面孔隙和裂缝中的沥青之间的物理力提供同时适用于宏、微观尺度;黏附主要取决于集料表面结构
化学反应理论14-18黏附力由沥青与集料表面的特性点位发生化学反应生成的新产物提供具体的反应产物难以确定;化学反应依赖于集料种类
静电理论41619沥青和集料借助双电层(Stern层和移动扩散层)间的静电引力相互吸引ζ为带电层剪切面电势的量度;ζ电势与PH值有关,不易测量
弱界面理论141620黏附破坏由界面区域某些特定位置的黏结强度降低引起弱边界为集料固有,或集料表面化合物和矿物在水中溶解后形成;过大的棱角性和孔隙率或过多的酸碱反应会形成弱界面;弱边界的具体位置难以判断
分子定向理论1192122黏附力主要由沥青内部存在的表面活性物质在集料表面产生定向吸附提供吸附量大的化合物脱附量也较大,说明沥青极性基团越多,黏附性越好的观点具有局限性
表面能理论23沥青润湿集料表面,发生能量交换,固-液体系表面能减小,产生黏附功可以判别黏附、剥落发生的方向;无法判别黏附、剥落发生的速率;能评估不同沥青-集料组合的相容性

表2

沥青与集料间的剥落机制"

过程机制理论
分离/取代水由于表面能比沥青低,极性比沥青高,较为完整地分离/取代集料表面的沥青热力学和化学反应
自发乳化胶结料的乳化削弱了界面处的黏附热力学和化学反应
胶浆散失/解吸胶浆材料在孔隙水压作用下的长期散失导致内聚力减弱/从集料表面脱落物理破坏
沥青膜开裂沥青膜和集料微裂缝的产生使结构完整性恶化,为水分的侵入提供路径物理破坏
孔隙水压高孔隙水压导致沥青膜破裂,水进入界面物理破坏
化学剥落水和集料之间的化学、静电作用使得沥青从集料表面脱落静电作用和化学反应
渗透沥青膜上存在的浓度梯度使得水分被运输至集料表面扩散作用
微生物活性界面上可能存在的微生物代谢产物影响了沥青-集料界面的黏附性细菌代谢

表3

松散混合料的黏附性评价方法"

分类名称测试过程评价指标
静态剥落类水煮法/水浸法、静水浸润法、沸煮法将裹附沥青的集料在恒定温度的水中浸泡一段时间沥青膜剥落程度
动态剥落类动态水浸法、旋转瓶法、动态振荡剥落试验、动态冲刷水煮法通过特定方式使裹附沥青的集料经受恒温水流冲刷沥青膜剥落程度
超声波剥落试验超声波在水中产生“气穴现象”,气泡爆炸释放能量作用至沥青-集料表面模拟动水冲刷沥青膜剥落程度
板冲击试验标准质量钢球在50 cm处自由落下冲击黏结石料(100 颗)的钢板震落碎石与碎石总量比
化学分析类光电比色法、美国公路战略研究计划(Strategic highway research program,SHRP)净吸附法、示踪盐法、溶剂洗脱法将裹附沥青的集料放入已知浓度的有色溶液静置,或者将集料放入一定浓度的沥青-甲苯溶液,加水洗脱集料表面沥青的吸附率和剥落率

表4

混合料组分的黏附性评价方法[30-33]"

名称测试方法评价指标
沥青黏结强度试验3031对沥青层施加垂直拉力,测量拉头从集料表面剥落时内聚破坏或黏附破坏的压力,转换为拉脱强度拉脱强度
剥离试验3435使用剥离臂从集料或基材表面剥离沥青,获取拉力与拉伸速率关系曲线(剥离曲线)剥离强度或断裂能
剪切黏附试验33制备集料或玻璃基材夹沥青层的“三明治”试件进行两端拉伸施加剪切力,获取破坏时界面上的剪切力或剪切强度剪切强度
沥青黏性测试对沥青层施加垂直拉力,仪器自动测量施加力的大小和薄膜分离的时间,并将其与沥青的黏性或黏性系数相关联,评估沥青的内聚破坏沥青黏性系数
DMA拉伸试验采用动态力学分析仪对“三明治”试件施加拉力,记录试验过程中的位移、力、强度以及相应的时间试件“破坏”时间或荷载循环次数
DSR动态剪切试验采用动态剪切流变仪对试件施加循环荷载,记录试件“破坏”时的荷载循环次数试件“破坏”时的荷载循环次数

表5

压实混合料水稳性能评价方法[2,5,40,41]"

试验名称测试方法评价参数
饱和老化拉伸刚度测试42水分作用(高温、高压)前、后混合料试件的劲度模量劲度模量比
双冲剪试验水分作用前、后混合料试件的冲剪强度冲剪强度比
Heveem稳定度测试剥落时混合料试件空隙内水分的浓度Heveem稳定度比
浸水压缩试验43水分作用前、后混合料试件的抗压强度抗压强度比
浸水马歇尔试验水分作用前、后混合料试件的马歇尔稳定度浸水残留稳定度
浸水飞散试验水分作用前、后试件在试验机中旋转撞击后散落材料的质量散落材料质量百分率
冻融台架试验记录水分作用前、后混合料试件产生裂纹时的冻融循环次数冻融循环次数
直接拉伸试验水分作用前、后混合料试件的拉伸强度直接抗拉强度
间接拉伸试验水分作用前、后混合料试件的拉伸强度

ITS

TSR

冻融劈裂试验水分作用前、后混合料试件的劈裂强度TSR
Lottman试验水分和冻融作用前、后混合料试件的拉伸强度或模量TSR
Root-Tunicliff试验在Lottman试验的基础上控制混合料试件饱水率不大于55%~80%(未经冻融循环)TSR
改进Lottman试验Lottman试验与Root-Tunicliff试验的综合,调整了冻融循环的温度和时间、试件尺寸和饱水压力TSR
动态力学分析试验水分作用前、后对沥青试样剪切模量和疲劳寿命的影响剪切模量曲线转折点处的荷载循环次数
小梁疲劳试验测量水分作用前、后混合料试件的疲劳寿命疲劳寿命
浸水轮辙试验记录车辙深度和循环次数的曲线图(蠕变曲线),绘制剥落拐点(蠕变曲线第2和第3部分斜率的交点)轮辙深度或剥落拐点的作用次数
环境调节系统44测量混合料试件的透水性和在湿、热循环和荷载循环作用下弹性模量的变化弹性模量
水敏感性测试测量湿热环境下循环荷载引起的孔隙水压作用后试件的强度与MIST处理后的测试有关

表6

基于室内试验的黏附性能和水稳定性能研究"

作者主要方法主要研究变量主要结论
Copeland等49拉脱试验沥青改性、长期老化改性剂并不总能提高黏附性能;长期老化会增加沥青内聚强度;水分参与的老化会降低黏附强度
Kanitpong等30拉脱试验、黏性测试、车辙试验抗剥落剂种类、聚合物改性剂聚合物同时改善黏附性和内聚性;抗剥落剂仅改善黏附性
Wasiuddin等50拉脱试验新的水处理方法、沥青集料种类、温拌剂种类拉脱试验与表面能计算的黏附强度未显示出良好相关性;Sasobit将混合破坏变为黏附破坏
Moraes等51拉脱试验、DSR测试沥青集料种类、改性剂种类不同组合的黏附强度结果与改进DSR应变扫描结果的排序相似
Mogawer等52拉脱试验、汉堡车辙试验温拌剂种类、老化时间、老化温度只有Sasobit显著提高了拉脱试验的黏附强度结果;高温和更长的老化时间可以提高汉堡车辙试验评估的水稳定性;拉脱试验与汉堡车辙试验结果未显示出良好相关性
Júnior等53静态剥落试验、改进Lottmen不同集料、沥青和抗剥落剂组合水稳定性和疲劳寿命与集料类型有关;黏附性好的混合物疲劳寿命更长
Bagampadde等54改进Lottmen不同集料、沥青组合沥青酸值、针入度等级和分子尺寸分布不会影响混合料的水稳定性;水稳定性与集料成分显著相关;水稳定性更多归因于集料而非沥青
Canestrari等14拉脱试验集料与RAP料、不同改性剂含量普通集料受到水的影响导致的性能损失比RAP料更明显;AP料似乎能改善沥青-集料体系的黏附性能,并显著降低水敏感性
Bagampadde等55间接拉伸试验集料种类含碱金属元素(如钠和钾)的集料对水分敏感;Al2O3和SiO2含量与水稳定性没有相关性
Zhou等47剪切黏附试验、拉脱试验、汉堡车辙试验改性剂和添加剂的种类与含量苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)和胶粉可以改善黏附性能;剪切黏附试验结果与汉堡车辙试验剥离曲线拐点在评价不同改性沥青时未见相关性,评价不同改性剂掺量时具有良好的相关性
Cui等35剥离试验改性剂种类、集料类型碱性集料黏附性优于酸性集料;集料化学成分贡献大于孔隙率
Kim等10DMA试验干、湿状态存在水分的混合物初始损伤水平更高且损伤发展速度更快;水稳定性与混合料组分的表面能特性有关

表7

常用的表面能测定方法"

方法理论基础主要参数测量对象特点
座滴法湿润特征接触角αβθ沥青、集料经济、设备简单,结果相对准确;高温下沥青液滴的尺寸难以控制;沥青试样表面难以达到均匀光滑;不适用于小接触角
核磁共振成像沥青数据较为可靠,但测试周期长;试件制备较为复杂,设备昂贵
威廉米平板法沥青、集料可测量动态接触角,测量值不受线性张力作用;样品的各向同性和尺寸要求较高;需保证板的湿润长度和体积恒定
柱状灯芯法集料成本低、易操作、复现性较好;仅用于粉体或小粒径填料,浸渍时间和浸渍高度读数、粉体的均匀性等人为操作有一定误差;探针液体的黏度或接触角不能过大
通用吸附装置吸附特征扩散压力πe集料测试结果准确但测试时间较长;设备昂贵,操作复杂;对待测集料粒径有要求
反气相色谱保留时间tr沥青、集料测试速度快但设备昂贵;色谱柱制备技术复杂
微热量计法浸没特征浸入焓ΔHimm集料测量相对快速、结果较为准确;测试前必须确定集料的比表面积;对熵贡献的假设会导致一定误差
杜诺伊环法表面张力表面张力γA沥青技术成熟、设备简单;测量快速、结果相对准确,但需要人工标定

表8

基于表面能理论的评价指标"

评价指标计算公式含义与水稳定性的关系
黏聚功WAWA=2γA干燥条件下沥青自身分离的难易程度正相关
黏附功WASWAS=γA+γS-γAS干燥条件下沥青-集料黏附的牢固程度正相关
剥落功WAWSWAWS=γAS-γAW-γSW有水条件下沥青-集料分离的难易程度负相关
扩散系数SC58SC=WAS-WA沥青胶结料润湿集料表面的能力正相关
能量比675960ER1ER1=WAS/WAWS黏附功与剥落功的相对值正相关
ER2ER2=WAS-WA/WAWSER1的基础上考虑了沥青胶结料的黏聚功正相关
ER3ER3=minWAS,WAWAWS黏附功与黏聚功两者最小值与剥落功的相对值正相关
ER1×AER1=WAS/WAWS×AER1的基础上考虑了集料的比表面积正相关
ER2×AER2=WAS-WA/WAWS×AER2的基础上考虑了集料的比表面积正相关
综合能量比CER8

CER=i=1npiWASi/i=1npiWAWSi

pi为第i种集料的质量占比

ER1的基础上考虑了集料种类,可用于RAP料正相关
能量参数61EP1EP1=WAS-WWS/WAS沥青-集料界面与水-集料界面黏附功的相对差值负相关
EP2EP2=WASWAS-WAWS沥青-集料界面黏附功与水作用下释放能量的比值正相关
EP4EP4=γAS×A单位质量集料剥落需要的力值正相关

表9

表面能指标与宏观指标的相关性"

研究对象表面能 指标宏观试验指标相关性
沥青集料黏聚功ITS、TSR石灰石尖端作用下的黏附功结果与ITS规律一致;SO2尖端作用下的黏附功/剥落功结果与TSR规律一致62
黏附功拉拔强度ER3与残留拉拔强度比、残留拉拔功比线性关系较强63
剥落功残留拉拔强度比黏附功与拉脱强度正相关64
ER3残留拉拔功比剥落功绝对值与浸水后拉拔强度损失线性正相关,与浸水后的拉拔强度近似线性负相关;拉拔强度与黏聚功近似线性正相关,与黏附功正相关65
沥青胶浆

黏聚功

黏附功

ER1ER2

拉拔强度

拉拔强度比

TSR

黏聚功与拉拔强度二次相关66

黏附功拉拔强度弱相关;干、湿状态的抗拉强度比与ER1近似二次相关,与ER2弱相关;足够冻融循环次数后,TSR与ER1ER2明显线性正相关66

沥青混合料黏附功动态模量比Ewec+Edry+=WAS1-Pa+WAWSPaWASPa为裸露在水中的集料表面积的百分比67-69
黏聚功飞散损失水温耦合作用下飞散损失结果与黏聚功、黏附功结果趋势一致70
剥落功汉堡车辙剥离拐点碾压次数汉堡车辙、TSR与CER结果可以得到相同的抗水损害等级8
EP1EP2浸水残留稳定度旧料掺量增加,ER值降低;RAP料浸水残留稳定度、冻融劈裂强度比与ER值高度相关71
SCEP4冻融劈裂强度比EP1与TSR近似线性负相关;EP2与TSR近似线性正相关;SCEP4与TSR弱相关61
ER1×ATSR黏附功、黏聚功与TSR正相关72
ER2×A残留稳定度黏附功和剥落功与TSR、残留稳定度近似线性正相关,ER1×A与残留稳定度与TSR近似线性正相关,ER2×A与残留稳定度和TSR相关性较ER1×A60

图1

沥青典型AFM图像[75]"

图2

沥青胶结料的二维形貌和典型力-距离曲线[83]"

图3

典型沥青-集料界面模型[96]"

图4

沥青-石英界面黏附强度计算模型与典型拉伸应力示意图[98]"

表10

基于MD技术的沥青-集料黏附性研究"

作者沥青模型集料模型力场评价指标研究变量主要结论
Yao99三组分SiO2AmberWAS界面系统形式、老化水倾向于附着在集料上;适度老化的沥青提高了黏附能力
Zheng100

十二分子

四组分

SiO2COMPASSWAS

沥青成分、老化方式

温度

短期老化后界面黏附力急剧下降,长期老化后下降趋势减缓;饱和分和芳香分在沥青润湿集料的过程中占主导地位,相较于饱和分和芳香分,沥青质对界面的低温黏结性能影响最小
Luo101

十二分子

四组分

SiO2、CaCO3COMPASSWASWAWSER

集料表面各向异性

集料类型

矿物表面各向异性显著影响界面黏结性能;新裂解的方解石表面对水敏感性贡献最大,羟基化的α-石英表面集中的羟基显著增加了表面亲水性,未羟基化的α-石英表面贡献最小
Sun96

十二分子

四组分

SiO2、CaCO3COMPASSΔEASΔEAWSER

水分、沥青组分

集料类型、老化

界面水改变了沥青组分的分布特征及沥青质的自聚集状态;沥青各组分与集料的黏附能力与水分作用下的变化趋势不同;老化对沥青与SiO2和CaCO3之间黏附性能的影响不同
Wang98三组分SiO2CVFFσadhesion沥青成分、温度、模型尺寸、加载速率、水分含量MD模拟的界面应力分离曲线与拉拔试验的破坏行为类似;沥青成分影响界面水敏感性,黏附强度随温度升高而降低;随着模型尺寸增大或加载速率减小,界面失效收敛于极限值
Xu97

十二分子

四组分

SiO2OPLSσadhesion

沥青成分、加载速率

温度

界面主要是黏聚失效,界面破坏强度和峰值后变形受加载速率和温度影响;抗拉强度和分离功与沥青质指数呈正线性相关
Xu94

二十分子

四组分

SiO2PCFFFadhesion

老化、沥青模型

AFM力曲线模型

MD模拟的黏附力远小于AFM结果,但两者具有良好一致性;黏附力和破坏形式与集料模型表面粗糙度有关;如果黏附破坏比例增加,则最大黏附力随着老化程度增大
Lu102三组分SiO2CVFFσij-σijj平面i方向的平均应力;界面拉伸强度由层间应力状态控制,界面的内聚破坏在低温和低应变率下表现出延展性
Lu103平均分子

SiO2

CaCO3

CVFFWASWAWS

沥青成分、集料类型

水分

界面能在水层存在时降低,集料为CaCO3时的降低幅度更低;CaCO3对沥青类型更敏感;集料类型在黏附失效中占主导地位

图5

利于黏附的集料几何特征[1]"

图6

MRR和TSR与SiO2、Al2O3、酸性不溶物含量的对比"

图7

10 d水分扩散和荷载作用下耗散能和刚度与沥青混合料总空隙率的对比[121]"

图8

花岗岩混合料平均孔径与干湿比的对比[122]"

图9

不同沥青混合料类型的沥青吸收量与蠕变增量[115]"

图10

改性沥青的剪切黏附试验和拉拔试验结果"

表11

常用抗剥落剂"

项目类 型
无机类金属皂化物表面活性剂有机高分子
代表物消石灰、水泥皂角铁季铵盐非胺、胺类聚合物
改性对象石料沥青沥青沥青
优点性能较好、成本低使用方便、成本低使用方便性能好,使用方便
缺点使用工艺复杂与沥青密度相差大,易离析性能一般,热稳定性差成本高
目前状况仍在使用较少使用较少使用较多使用
1 Guo F, Pei J, Zhang J, et al. Study on the adhesion property between asphalt binder and aggregate: a state-of-the-art review[J]. Construction and Building Materials, 2020, 256: No. 119474.
2 Mehrara A, Khodaii A. A review of state of the art on stripping phenomenon in asphalt concrete[J]. Construction and Building Materials, 2013, 38: 423-442.
3 Canestrari F, Cardone F, Graziani A, et al. Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage[J]. Road Materials and Pavement Design, 2010, 11(): 11-32.
4 Caro S, Masad E, Bhasin A, et al. Moisture susceptibility of asphalt mixtures, part 1: mechanisms[J]. International Journal of Pavement Engineering, 2008, 9(2): 81-98.
5 Kakar M R, Hamzah M O, Valentin J. A review on moisture damages of hot and warm mix asphalt and related investigations[J]. Journal of Cleaner Production, 2015, 99: 39-58.
6 Soenen H, Vansteenkiste S, de Maeijer P K. Fundamental approaches to predict moisture damage in asphalt mixtures: state-of-the-art review[J]. Infrastructures, 2020, 5(2): No.20.
7 王岚, 罗学东, 张琪, 等. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 123-130.
Wang Lan, Luo Xue-dong, Zhang Qi, et al. Analysis of adhesion of warm mix rubber powder modified asphalt aggregates and water stability of the system[J]. Materals Reports, 2022, 36(8): 123-130.
8 Ghabchi R, Singh D, Zaman M, et al. Micro-structural analysis of moisture-induced damage potential of asphalt mixes containing RAP[J]. Journal of Testing and Evaluation, 2016, 44(1): 194-205.
9 Kim Y R, Little D, Lytton R. Fatigue and healing characterization of asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2003, 15(1): 75-83.
10 Kim Y R, Little D N, Lytton R L. Effect of moisture damage on material properties and fatigue resistance of asphalt mixtures[J]. Transportation Research Record, 2004, 1891(1): 48-54.
11 Yu X, Burnham N A, Tao M. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33.
12 Yao H, Liu J, Xu M, et al. Discussion on molecular dynamics (MD) simulations of the asphalt materials[J]. Advances in Colloid and Interface Science, 2022, 299: No.102565.
13 McBain J W, Hopkins D G. On adhesives and adhesive action[J]. The Journal of Physical Chemistry, 1925, 29(2): 188-204.
14 Canestrari F, Ferrotti G, Cardone F, et al. Innovative testing protocol for evaluation of binder-reclaimed aggregate bond strength[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2444(1): 63-70.
15 Petersen J, Plancher H, Ensley E, et al. Chemistry of asphalt-aggregate interaction: relationship with pavement moisture-damage prediction test[J]. Transportation Research Record, 1982, 843: 95-104.
16 Hefer A W, Little D N, Lytton R L. A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74(139): No.e196.
17 Huang S C, Branthaver J F, Robertson R E. Interaction of asphalt films with aggregate surfaces in the presence of water[J]. Road Materials and Pavement Design, 2002, 3(1): 23-48.
18 Petersen J C, Plancher H. Model studies and interpretive review of the competitive adsorption and water displacement of petroleum asphalt chemical functionalities on mineral aggregate surfaces[J]. Petroleum Science and Technology, 1998, 16(1/2): 89-131.
19 Tan Y, Guo M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic[J]. Construction and Building Materials, 2013, 47: 254-260.
20 陈燕娟. 酸性集料表面活化技术与粘附机理研究[D]. 西安: 长安大学材料科学与工程学院, 2012.
Chen Yan-juan.Surface activation technology of acid aggregate and adhesion mechanism[D]. Xi'an: School of Materials Science and Engineering, Chang'an University, 2012.
21 任玉娜. 聚合物改性沥青粘聚性与粘附性研究[D]. 青岛: 中国石油大学(华东)化学化工学院, 2011.
Ren Yu-na. Research on cohesion and adhesion properties of polymer modified asphalt[D]. Qingdao: College of Chemistry and Chemical Engineering, China University of Petroleum, 2011.
22 Ensley E K. Multilayer adsorption with molecular orientation of asphalt on mineral aggregate and other substrates[J]. Journal of Applied Chemistry and Biotechnology, 1975, 25(9): 671-682.
23 庞骁奕. 基于AFM与表面能原理的沥青与集料粘附特性分析[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2015.
Pang Xiao-yi. Asphalt and aggregate adhesion characteristics analysis based on the principle of AFM and the surface energy[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2015.
24 Huang S C, Robertson R E. Rheology of thin asphalt films in contact with aggregate[J]. Road Materials and Pavement Design, 2006, 7(2): 179-199.
25 Bagampadde U, Isacsson U, Kiggundu B M. Classical and contemporary aspects of stripping in bituminous mixes[J]. Road Materials and Pavement Design, 2004, 5(1): 7-43.
26 Caro S, Masad E, Bhasin A, et al. Moisture susceptibility of asphalt mixtures, part 2: characterisation and modelling[J]. International Journal of Pavement Engineering, 2008, 9(2): 99-114.
27 周卫峰. 沥青与集料界面粘附性研究[D]. 西安: 长安大学材料科学与工程学院, 2002.
Zhou Wei-feng. Study on adhesion of interface between asphalt and aggregate[D]. Xi'an: School of Materials Science and Engineering, Chang'an University, 2002.
28 陈斌华. 基于光电比色法的沥青与矿料粘附效应研究[D]. 西安: 长安大学公路学院, 2014.
Chen Bin-hua. Based on the photoelectric colormetric method of asphalt and mineral aggregate adhesion effect [D]. Xi'an: School of Highway, Chang'an University, 2014.
29 宋艳茹, 张玉贞. 沥青粘附性能评价方法综述[J]. 石油沥青, 2005(3): 1-6.
Song Yan-ru, Zhang Yu-zhen. The evaluating methods' summary of asphalt adhesion[J]. Petroleum Asphalt, 2005(3): 1-6.
30 Kanitpong K, Bahia H. Relating adhesion and cohesion of asphalts to the effect of moisture on laboratory performance of asphalt mixtures[J]. Transportation Research Record, 2005, 1901(1): 33-43.
31 Zhang J, Apeagyei A K, Airey G D, et al. Influence of aggregate mineralogical composition on water resistance of aggregate-bitumen adhesion[J]. International Journal of Adhesion and Adhesives, 2015, 62: 45-54.
32 徐青杰.沥青-集料黏附性能多尺度分析与评价方法研究[D]. 重庆: 重庆交通大学交通运输学院, 2020.
Xu Qing-jie. Multi-scale analysis and evaluation method of asphalt-aggregate adhesion [D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2020.
33 王威娜, 徐青杰, 周圣雄, 等. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
Wang Wei-na, Xu Qing-jie, Zhou Sheng-xiong, et al. A review on evaluation methods of asphalt-aggregate adhesion[J]. Materials Reports, 2019, 33(13): 2197-2205.
34 Blackman B R, Cui S, Kinloch A J, et al. The development of a novel test method to assess the durability of asphalt road-pavement materials[J]. International Journal of Adhesion and Adhesives, 2013, 42: 1-10.
35 Cui S, Blackman B R, Kinloch A J, et al. Durability of asphalt mixtures: effect of aggregate type and adhesion promoters[J]. International Journal of Adhesion and Adhesives, 2014, 54: 100-111.
36 Mo L T. Damage development in the adhesive zone and mortar of porous asphalt concrete[D]. Netherlands: Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2010.
37 Kanitpong K, Bahia H U. Role of adhesion and thin film tackiness of asphalt binders in moisture damage of HMA (with discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 2003, 72: 502-528.
38 Cho D W, Bahia H U. Effects of aggregate surface and water on rheology of asphalt films[J]. Transportation Research Record, 2007, 1998(1): 10-17.
39 肖月. 沥青混合料中胶浆-集料粘结性及力学性能研究[D]. 武汉: 武汉理工大学材料科学与工程学院, 2008.
Xiao Yue. Fracture mechanisms of binder-aggregate system and its effect on properties of asphalt mixtures [D].Wuhan: School of Materials Science and Engineering, Wuhan University of Technology, 2008.
40 Huang B, Shu X, Dong Q, et al. Laboratory evaluation of moisture susceptibility of hot-mix asphalt containing cementitious fillers[J]. Journal of Materials in Civil Engineering, 2010, 22(7): 667-673.
41 Varveri A, Avgerinopoulos S, Scarpas A. Experimental evaluation of long-and short-term moisture damage characteristics of asphalt mixtures[J]. Road Materials and Pavement Design, 2016, 17(1): 168-186.
42 Collop A C, Choi Y, Airey G. Effects of pressure and aging in SATS test[J]. Journal of Transportation Engineering, 2007, 133(11): 618-624.
43 Abed A H, Qasim Z I, Al-Mosawe H, et al. The effect of hybrid anti-stripping agent with polymer on the moisture resistance of hot-mix asphalt mixtures[J]. Cogent Engineering, 2019, 6(1): No.1659125.
44 Murshed A M, Tandon V, Nazarian S, et al. Identification of moisture-susceptible asphalt concrete mixes using modified environmental conditioning system[J]. Transportation Research Record, 1998, 1630(1): 106-116.
45 Al-Swailmi S, Terrel R L. Evaluation of water damage of asphalt Concrete mixtures using the environmental conditioning system (Ecs)(with discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 1992, 61: 405-445.
46 任敏达, 冯汉卿, 丛林, 等. 沥青混合料饱水过程的强度演化规律及机理分析[J]. 建筑材料学报, 2022, 25(5): 537-544.
Ren Min-da, Feng Han-qing, Cong Lin, et al. Strength evolution law and mechanism analysis of asphalt mixtures during water saturation[J]. Journal of Building Materials, 2022, 25(5): 537-544.
47 Zhou L, Huang W, Xiao F, et al. Shear adhesion evaluation of various modified asphalt binders by an innovative testing method[J]. Construction and Building Materials, 2018, 183: 253-263.
48 Kim Y R, Lutif J S, Bhasin A, et al. Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing[J]. Journal of Materials in Civil Engineering, 2008, 20(10): 659-667.
49 Copeland A R, Youtcheff J, Shenoy A. Moisture sensitivity of modified asphalt binders: factors influencing bond strength[J]. Transportation Research Record, 2007, 1998(1): 18-28.
50 Wasiuddin N M, Saltibus N E, Mohammad L N. Novel moisture-conditioning method for adhesive failure of hot-and warm-mix asphalt binders[J]. Transportation Research Record, 2011, 2208(1): 108-117.
51 Moraes R, Velasquez R, Bahia H U. Measuring the effect of moisture on asphalt-aggregate bond with the bitumen bond strength test[J]. Transportation Research Record, 2011, 2209(1): 70-81.
52 Mogawer W S, Austerman A J, Bahia H U. Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures[J]. Transportation Research Record, 2011, 2209(1): 52-60.
53 Júnior J L L, Babadopulos L F, Soares J B. Moisture-induced damage resistance, stiffness and fatigue life of asphalt mixtures with different aggregate-binder adhesion properties[J]. Construction and Building Materials, 2019, 216: 166-175.
54 Bagampadde U, Isacsson U, Kiggundu B. Impact of bitumen and aggregate composition on stripping in bituminous mixtures[J]. Materials and Structures, 2006, 39(3): 303-315.
55 Bagampadde U, Isacsson U, Kiggundu B. Influence of aggregate chemical and mineralogical composition on stripping in bituminous mixtures[J]. The international Journal of Pavement Engineering, 2005, 6(4): 229-239.
56 豆莹莹, 李晓民, 姚志杰, 等. 基于表面自由能的再生沥青粘附性及其水稳定性[J]. 材料科学与工程学报, 2020, 38(4): 648-653.
Dou Ying-ying, Li Xiao-min, Yao Zhi-jie, et al. Adhesion and water stability of regenerated asphalt based on surface free energy[J]. Journal of Materials Science & Engineering, 2020, 38(4): 648-653.
57 成志强, 张晓燕, 孔繁盛, 等. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报,2020,34():1288-1294.
Cheng Zhi-qiang, Zhang Xiao-yan, Kong Fan-sheng,et al. Investigation on stripping behavior of asphalt Film using surface energy theory and pull-off test[J]. Materials Reports, 2020, 34(Sup.2): 1288-1294.
58 Wasiuddin N M, Zaman M M, ORear E A. Effect of sasobit and aspha-min on wettability and adhesion between asphalt binders and aggregates[J]. Transportation Research Record, 2008, 2051(1): 80-89.
59 Bhasin A, Little D N, Vasconcelos K L, et al. Surface free energy to identify moisture sensitivity of materials for asphalt mixes[J]. Transportation Research Record, 2007, 2001(1): 37-45.
60 Wang W, Shen A, Yang X, et al. Surface free energy method for evaluating the effects of anti-stripping agents on the moisture damage to asphalt mixtures[J]. Journal of Adhesion Science and Technology, 2020, 34(18): 1947-1970.
61 Hamedi G H, Moghadas Nejad F. Using energy parameters based on the surface free energy concept to evaluate the moisture susceptibility of hot mix asphalt[J]. Road Materials and Pavement Design, 2015, 16(2): 239-255.
62 Al-Rawashdeh A S, Sargand S. Performance assessment of a warm asphalt binder in the presence of water by using surface free energy concepts and nanoscale techniques[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 803-811.
63 王端宜, 郭秀林, 唐成. 基于真实沥青膜厚的沥青与集料黏结性能评价与验证[J]. 建筑材料学报, 2021, 24(3): 624-629.
Wang Duan-lin, Guo Xiu-lin, Tang Cheng. Bonding performance evaluation and verification between asphalt and aggregate based on true asphalt film thickness[J]. Journal of Building Materials, 2021, 24(3): 624-629.
64 Yi J, Pang X, Feng D, et al. Studies on surface energy of asphalt and aggregate at different scales and bonding property of asphalt-aggregate system[J]. Road Materials and Pavement Design, 2018, 19(5): 1102-1125.
65 Moraes R, Velasquez R, Bahia H. Using bond strength and surface energy to estimate moisture resistance of asphalt-aggregate systems[J]. Construction and Building Materials, 2017, 130: 156-170.
66 Guo M, Tan Y, Zhou S. Multiscale test research on interfacial adhesion property of cold mix asphalt[J]. Construction and Building Materials, 2014, 68: 769-776.
67 Kim S H, Jeong J H, Kim N. Use of surface free energy properties to predict moisture damage potential of asphalt concrete mixture in cyclic loading condition[J]. KSCE Journal of Civil Engineering, 2003, 7(4): 381-387.
68 Arabani M, Hamedi G H. Using the surface free energy method to evaluate the effects of polymeric aggregate treatment on moisture damage in hot-mix asphalt[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 802-811.
69 Hamedi G H. Effects of polymeric coating the aggregate surface on reducing moisture sensitivity of asphalt mixtures[J]. International Journal of Civil Engineering, 2018, 16(9): 1097-1107.
70 马翔, 胡绪泉, 王丽丽, 等. 基于表面自由能研究水温耦合作用对沥青黏结性能的影响[J]. 森林工程, 2022, 38(4): 140-146.
Ma Xiang, Hu Xu-quan, Wang Li-li. Study on the effect of water temperature coupling on asphalt bond performance based on surface free energy[J]. Forest Engineering, 2022, 38(4): 140-146.
71 冯浩浩, 苗强, 李振纲, 等. 基于表面能理论的再生集料与沥青黏附性影响研究[J/OL]. [2022-11-05].
72 Hamedi G H, Moghadas N F. Evaluating the effect of mix design and thermodynamic parameters on moisture sensitivity of hot mix asphalt[J]. Journal of Materials in Civil Engineering, 2017, 29(2): No.04016207.
73 Masad E A, Zollinger C, Bulut R, et al. Characterization of HMA moisture damage using surface energy and fracture properties (With Discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 2006, 75: 713-754.
74 Loeber L, Sutton O, Morel J, et al. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.
75 Das P K, Baaj H, Tighe S, et al. Atomic force microscopy to investigate asphalt binders: a state-of-the-art review[J]. Road Materials and Pavement Design, 2016, 17(3): 693-718.
76 Tarefder R, Arifuzzaman M. A study of moisture damage in plastomeric polymer modified asphalt binder using functionalized AFM tips[J]. Journal of Systemics, Cybernetics and Informatics, 2011, 9(5): 1-12.
77 Yao Z, Zhu H, Gong M, et al. Characterization of asphalt materials' moisture susceptibility using multiple methods[J]. Construction and Building Materials, 2017, 155: 286-295.
78 易军艳, 庞骁奕, 姚冬冬, 等. 基于原子力显微镜技术的沥青与矿料表面粗糙度及黏附特性[J]. 复合材料学报, 2017, 34(5): 1111-1121.
Yi Jun-yan, Pang Xiao-yi, Yao Dong-dong, et al. Characterization of surface roughness and adhesive mechanism of asphalt and mineral aggregate based on atomic force microscopy method[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1111-1121.
79 Xu M, Yi J, Feng D, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12393-12403.
80 Vasconcelos K L, Bhasin A, Little D N. History dependence of water diffusion in asphalt binders[J]. International Journal of Pavement Engineering, 2011, 12(5): 497-506.
81 dos Santos S, Partl M N, Poulikakos L D. Newly observed effects of water on the microstructures of bitumen surface[J]. Construction and Building Materials, 2014, 71: 618-627.
82 Lyne Å L, Wallqvist V, Birgisson B. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256.
83 Yu X, Burnham N A, Mallick R B, et al. A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders[J]. Fuel, 2013, 113: 443-447.
84 邓越, 孙国强, 余可心, 等. 沥青混合料水损坏微纳观尺度研究方法(1)——AFM的应用[J]. 石油沥青, 2018, 32(1): 31-37.
Deng Yue, Sun Guo-qiang, Yu Ke-xin, et al. Micro-Nano scale research methods for moisture damage of asphalt mixtures (1)—the application of AFM[J]. Petroleum Asphalt, 2018, 32(1): 31-37.
85 刘克非, 邓林飞, 郑佳宇, 等. 不同沥青结合料水损害的纳米尺度研究[J]. 材料研究学报, 2016, 30(10): 773-780.
Liu Ke-fei, Deng Lin-fei, Zheng Jia-yu, et al. Moisture induced damage of various asphalt binders[J]. Chinese Journal of Materials Research, 2016, 30(10): 773-780.
86 Tarefder R A, Zaman A M. Nanoscale evaluation of moisture damage in polymer modified asphalts[J]. Journal of Materials in Civil Engineering, 2010, 22(7): 714-725.
87 Medendorp C A. Atomic force microscopy method development for surface energy analysis[D]. Kentucky:College of Pharmacy, University of Kentucky, 2011.
88 Chen Z, Pei J, Li R, et al. Performance characteristics of asphalt materials based on molecular dynamics simulation—a review[J]. Construction and Building Materials, 2018, 189: 695-710.
89 Pauli A T, Miknis F, Beemer A, et al. Assessment of physical property prediction based on asphalt average molecular structures[C]∥Chemistry of Petroleum and Emerging Technologies, Washington, DC,USA, 2005, 50(2): 255-259.
90 Zhang L, Greenfield M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3): 1712-1716.
91 Zhang L, Greenfield M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy & Fuels, 2008, 22(5): 3363-3375.
92 Hansen J S, Lemarchand C A, Nielsen E, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): No.094508.
93 Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356.
94 Xu M, Yi J, Qi P, et al. Improved chemical system for molecular simulations of asphalt[J]. Energy & Fuels, 2019, 33(4): 3187-3198.
95 马建民, 孙国强, 胡明君, 等. 沥青混合料水损坏微纳观尺度研究方法(3)—分子动力学模拟[J]. 石油沥青, 2018, 32(3): 42-47, 59.
Ma Jian-min, Sun Guo-qiang, Hu Ming-jun, et al.Micro-Nano scale research methods for the moisture damage of asphalt mixtures(3)—molecular dynamics simulation[J]. Petroleum Asphalt, 2018, 32(3): 42-47, 59.
96 Sun W, Wang H. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: a molecular dynamics study[J]. Applied Surface Science, 2020, 510: No.145435.
97 Xu G, Wang H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254.
98 Wang H, Lin E, Xu G. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5): 414-423.
99 Yao H, Dai Q, You Z. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures[J]. Construction and Building Materials, 2015, 101: 536-547.
100 Zheng C, Shan C, Liu J, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: No.121151.
101 Luo L, Chu L, Fwa T. Molecular dynamics analysis of moisture effect on asphalt-aggregate adhesion considering anisotropic mineral surfaces[J]. Applied Surface Science, 2020, 527: No.146830.
102 Lu Y, Wang L. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401.
103 Lu Y, Wang L. Atomistic modelling of moisture sensitivity: a damage mechanisms study of asphalt concrete interfaces[J]. Road Materials and Pavement Design, 2017, 18(Sup.3): 200-214.
104 Swamy A K, Matolia V, Ramana G. Interrelationship between uncompacted void content of aggregates and asphalt concrete properties[J]. Particulate Science and Technology, 2019, 37(5): 623-631.
105 王志祥, 李建阁, 张争奇. 集料形态特征对集料-沥青黏附及水稳定性的影响[J]. 建筑材料学报, 2021, 24(5): 1039-1047.
Wang Zhi-xiang, Li Jian-ge, Zhang Zheng-qi. Effects of aggregate morphological characteristics on adhesion of aggregate‑asphalt and its moisture stability[J]. Journal of Building Materials, 2021, 24(5): 1039-1047.
106 王璐. 沥青-集料界面相结构和粘附机理研究[D]. 西安: 长安大学公路学院, 2014.
Wang Lu. Investigation of the interface structure and adhesion mechanism between asphalt and aggregate[D]. Xi'an: School of Highway, Chang'an University, 2014.
107 苏文超. 碎石颗粒形状对沥青混合料性能影响的试验研究[D]. 长沙: 长沙理工大学交通运输工程学院, 2013.
Su Wen-chao. Experimental study on gravel particle shape effect on the performance of asphalt mixture[D]. Changsha: School of Traffic & Transportation Engineering, Changsha University, 2013.
108 Airey G, Collop A, Zoorob S, et al. The influence of aggregate, filler and bitumen on asphalt mixture moisture damage[J]. Construction and Building Materials, 2008, 22(9): 2015-2024.
109 Cala A, Caro S, Lleras M, et al. Impact of the chemical composition of aggregates on the adhesion quality and durability of asphalt-aggregate systems[J]. Construction and Building Materials, 2019, 216: 661-672.
110 虞将苗, 周文理. 宏纳观多尺度集料-沥青粘附性评价[J]. 材料导报, 2021, 35(2): 2052-2056.
Yu Jiang-miao, Zhou Wen-li. Experimental study on gravel particle shape effect on the performance of asphalt mixture[J]. Materials Reports, 2021, 35(2): 2052-2056.
111 Blazek J, Sebor G, Maxa D. Effect of aggregate composition on asphalt-aggregate adhesion[J]. Petroleum and Coal, 2000, 42(1): 46-51.
112 Huang M, Zhang H, Gao Y, et al. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2021, 22(3): 319-330.
113 Wang H, Wang J, Chen J. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119.
114 Hossain M I, Tarefder R A. Identifying damage in asphalt matrix materials surrounding an aggregate particle[J]. Construction and Building Materials, 2013, 49: 536-546.
115 Abo Q S, Al S H. Effect of aggregate properties on asphalt mixtures stripping and creep behavior[J]. Construction and Building Materials, 2007, 21(9): 1886-1898.
116 豆莹莹, 魏定邦, 李晓民, 等. 沥青-集料界面黏附性衰减机理研究[J]. 建筑材料学报, 2019, 22(5): 771-779.
Dou Ying-ying, Wei Ding-bang, Li Xiao-min,et al. Adhesion attenuation mechanism of asphalt-aggregate interface[J]. Journal of Building Materials, 2019, 22(5): 771-779.
117 Kutay M E, Aydilek A H. Pore pressure and viscous shear stress distribution due to water flow within asphalt pore structure[J]. Computer Aided Civil and Infrastructure Engineering, 2009, 24(3): 212-224.
118 Noguera J A H, Quintana H A R, Gómez W D F. The influence of water on the oxidation of asphalt cements[J]. Construction and Building Materials, 2014, 71: 451-455.
119 张吉哲, 王静, 李岩, 等. 沥青胶浆-集料界面水盐侵蚀损伤规律研究[J]. 材料导报, 2022, 36(16): 21-29.
Zhang Ji-zhe, Wang Jing, Li Yan. Study on water and salt erosion damage of asphalt mortar-aggregate interface[J]. Materials Reports, 2022, 36(16): 21-29.
120 成志强, 张晓燕, 孔繁盛. 水分在沥青膜中的扩散特征[J]. 建筑材料学报, 2021, 24(2): 399-404.
Cheng Zhi-qiang, Zhang Xiao-yan, Kong Fan-sheng. Moisture diffusion property into asphalt film[J]. Journal of Building Materials, 2021, 24(2): 399-404.
121 Caro S, Masad E, Bhasin A, et al. Probabilistic modeling of the effect of air voids on the mechanical performance of asphalt mixtures subjected to moisture diffusion[J]. Asphalt Paving Technology, 2010, 79: 221-228.
122 Masad E, Castelblanco A, Birgisson B. Effects of air void size distribution, pore pressure, and bond energy on moisture damage[J]. Journal of Testing and Evaluation, 2006, 34(1): 15-23.
123 Arambula E, Masad E, Martin A E. Influence of air void distribution on the moisture susceptibility of asphalt mixes[J]. Journal of Materials in Civil Engineering, 2007, 19(8): 655-664.
124 Schram S, Abdelrahman M. Effects of asphalt film thickness on field performance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 5(7): 600-628.
125 Kiggundu B M, Roberts F L. Stripping in HMA mixtures: state-of-the-art and critical review of test methods[EB/OL]. [2022-11-04].
126 Gao J, Guo C, Liu Y. Measurement of pore water pressure in asphalt pavement and its effects on permeability[J]. Measurement, 2015, 62: 81-87.
127 Li S, Zhang H, Sun L. Development and simulation measurement of dynamic hydraulic pressure[J]. Journal of Tongji University, 2007, 35(7): No.915.
128 Lei Y, Hu X, Wang H, et al. Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: measurement with a designed device[J]. Measurement, 2017, 98: 1-9.
129 王英, 杨熙, 姜继斌, 等. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 50-56.
Wang Ying, Yang Xi, Jiang Ji-bin.The micro process of water damage in asphalt mixture in seasonal frozen area under the dynamic water erosion[J]. Materials Reports, 2022, 36(10): 50-56.
130 Feng D, Yi J, Wang D, et al. Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China[J]. Cold Regions Science and Technology, 2010, 62(1): 34-41.
131 Kutay M E, Aydilek A H. Dynamic effects on moisture transport in asphalt concrete[J]. Journal of Transportation Engineering, 2007, 133(7): 406-414.
132 Kringos N, Scarpas T, Kasbergen C, et al. Modelling of combined physical-mechanical moisture-induced damage in asphaltic mixes, part 1: governing processes and formulations[J]. International Journal of Pavement Engineering, 2008, 9(2): 115-128.
133 周璐, 黄卫东, 吕泉, 等. 不同改性剂对沥青黏结及抗水损害性能的影响[J]. 建筑材料学报, 2021, 24(2): 377-384.
Zhou Lu, Huang Wei-dong, Lv Quan,et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials, 2021, 24(2): 377-384.
134 季节, 马榕达, 郑文华, 等. TLA和DCLR对沥青与集料黏附性的影响[J]. 重庆交通大学学报: 自然科学版, 2018, 37(1): 54-61.
Ji Jie, Ma Rong-da, Zheng Wen-hua, et al. Effect of DCLR and TLA on adhesion characteristics of asphalt and aggregate[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(1): 54-61.
135 Chakravarty H, Sinha S. Moisture damage of bituminous pavements and application of nanotechnology in its prevention[J]. Journal of Materials in Civil Engineering, 2020, 32(8): No.03120003.
136 Oliviero R C, Teltayev B, Angelico R. Adhesion promoters in bituminous road materials: a review[J]. Applied Sciences, 2017, 7(5): No.524.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
[5] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[6] 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798.
[7] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[8] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[9] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[10] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[11] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[12] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[13] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[14] 李博,李欣,芮红,梁媛. 基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测[J]. 吉林大学学报(工学版), 2023, 53(6): 1853-1860.
[15] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .