吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 516-523.doi: 10.13229/j.cnki.jdxbgxb.20221340
• 计算机科学与技术 • 上一篇
Xiong-fei LI(),Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG
摘要:
为精准识别双时相遥感图像的变化区域,提出了一种基于多尺度融合的遥感图像变化检测模型。该模型在源图像特征提取阶段构造多尺度输入金字塔,接受多层次的感受野,增强对特征信息的感知;并通过对深层差异特征进行多尺度计算,实现精准定位变化区域与充分挖掘细节信息间的平衡;同时融合网络不同层级的差异特征检测结果,极大程度识别并保留语义变化信息。实验结果表明:本文模型在主观评价与客观指标上都具有良好的表现效果。
中图分类号:
1 | Luo H, Liu C, Wu C, et al. Urban change detection based on Dempster-Shafer theory for multitemporal very high-resolution imagery[J]. Remote Sensing, 2018, 10(7): 10070980. |
2 | Lv Z, Liu T, Wan Y, et al. Post-processing approach for refining raw land cover change detection of very high-resolution remote sensing images[J]. Remote Sensing, 2018, 10(3): 10030472. |
3 | Willis K S. Remote sensing change detection for ecological monitoring in United States protected areas[J]. Biological Conservation, 2015, 182: 233-242. |
4 | Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106. |
5 | Deng J S, Wang K, Deng Y H, et al. PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data[J]. International Journal of Remote Sensing, 2008, 29(16): 4823-4838. |
6 | Nielsen A A, Conradsen K, Simpson J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19. |
7 | Malila W A. Change vector analysis: an approach for detecting forest changes with Landsat[C]∥6th Proceedings of the Society of Photo-Optical Instrumentation Engineers, Lafeyette, USA, 1980: 326-336. |
8 | 慕彩红, 霍利利, 刘逸, 等. 基于小波融合和PCA-核模糊聚类的遥感图像变化检测[J]. 电子学报, 2015, 43(7): 1375-1381. |
Mu Cai-hong, Huo Li-li, Liu Yi, et al. Change detection for remote sensing images based on wavelet fusion and PCA-Kernel fuzzy clustering[J]. Acta Electronica Sinica, 2015, 43(7): 1375-1381. | |
9 | Canty M J, Nielsen A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation[J]. Remote Sensing of Environment, 2008, 112(3): 1025-1036. |
10 | Shi W, Zhang M, Zhang R, et al. Change detection based on artificial intelligence: State-of-the-art and challenges[J]. Remote Sensing, 2020, 12(10): 12101688. |
11 | Daudt R C, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]∥ 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 4063-4067. |
12 | Fang S, Li K, Shao J, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. |
13 | Peng D, Zhang Y, Guan H. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 11111382. |
14 | Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 12101662. |
15 | Peng X, Zhong R, Li Z, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7296-7307. |
16 | 赵亚慧, 杨飞扬, 张振国, 等. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报: 工学版, 2021, 51(4): 1387-1395. |
Zhao Ya-hui, Yang Fei-yang, Zhang Zhen-guo, et al. Korean text structure discovery based on reinforcement learning and attention mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1387-1395. | |
17 | 周大可, 张超, 杨欣. 基于多尺度特征融合及双重注意力机制的自监督三维人脸重建[J]. 吉林大学学报: 工学版, 2022, 52(10): 2428-2437. |
Zhou Da-ke, Zhang Chao, Yang Xin. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2428-2437. | |
18 | Jiang H, Hu X, Li K, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 12030484. |
19 | Song K, Jiang J. AGCDetNet: an attention-guided network for building change detection in high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4816-4831. |
20 | Ding Q, Shao Z, Huang X, et al. DSA-Net: a novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102591. |
21 | Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 3-19. |
22 | Ji S, Wei S, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 574-586. |
[1] | 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332. |
[2] | 王春华,李恩泽,肖敏. 多特征融合和孪生注意力网络的高分辨率遥感图像目标检测[J]. 吉林大学学报(工学版), 2024, 54(1): 240-250. |
[3] | 陈岳林,高铸成,蔡晓东. 基于BERT与密集复合网络的长文本语义匹配模型[J]. 吉林大学学报(工学版), 2024, 54(1): 232-239. |
[4] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[5] | 蔡志丹,方明,李喆,许佳路. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2649-2658. |
[6] | 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429. |
[7] | 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436. |
[8] | 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015. |
[9] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[10] | 吴飞,农皓业,马晨浩. 基于粒子群优化算法⁃长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 989-997. |
[11] | 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662. |
[12] | 刘春晖,王思长,郑策,陈秀连,郝春蕾. 基于深度学习的室内导航机器人避障规划算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3558-3564. |
[13] | 吕晓琪,李浩,谷宇. 基于深度学习算法的人脸图像活体特征变换尺度提取[J]. 吉林大学学报(工学版), 2023, 53(11): 3201-3206. |
[14] | 王军,王华琳,黄博文,付强,刘俊. 基于联邦学习和自注意力的工业物联网入侵检测[J]. 吉林大学学报(工学版), 2023, 53(11): 3229-3237. |
[15] | 成丽波,李新月,李喆,贾小宁. 基于曲波变换与拟合优度检验的遥感图像去噪方法[J]. 吉林大学学报(工学版), 2023, 53(11): 3207-3213. |
|