吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2563-2572.doi: 10.13229/j.cnki.jdxbgxb.20211238

• 交通运输工程·土木工程 • 上一篇    下一篇

在役混凝土T梁疲劳刚度退化及寿命预测方法

左新黛(),张劲泉,赵尚传   

  1. 交通运输部公路科学研究院 桥梁隧道研究中心,北京 100088
  • 收稿日期:2021-11-18 出版日期:2023-09-01 发布日期:2023-10-09
  • 作者简介:左新黛(1979-),女,副研究员,硕士.研究方向:桥梁结构安全与耐久性.E-mail:330217252@qq.com
  • 基金资助:
    交通运输部公路院科技创新专项资金项目(2019-I113);中央级公益性科研所基本科研业务费项目(2017-9035)

Fatigue stiffness degradation and life prediction method of in⁃service concrete T⁃beams

Xin-dai ZUO(),Jin-quan ZHANG,Shang-chuan ZHAO   

  1. Bridge Tunnel Research Center,Research Institute of Highway Ministry of Transport,Beijing 100088,China
  • Received:2021-11-18 Online:2023-09-01 Published:2023-10-09

摘要:

为获取在役混凝土T梁疲劳刚度退化规律,开展疲劳寿命预测,基于损伤力学理论构建了考虑开裂损伤的混凝土T梁阶梯刚度模型,通过对3根10 m钢筋混凝土T梁足尺模型进行静力和疲劳破坏试验,获取了疲劳剩余刚度随荷载作用次数的演化规律。引入疲劳损伤系数和刚度退化系数,建立了在役混凝土T梁疲劳寿命预测模型。分析结果表明:随着荷载作用次数的增加,桥梁剩余刚度呈现三阶段衰减,其中疲劳初期和后期阶段衰减较快,但占总寿命比重相对较小,而疲劳中期阶段呈线性稳定退化,约占疲劳总寿命的80%以上,为桥梁服役的主要阶段,疲劳破坏时剩余刚度约为初始刚度的82.7%。最终,针对在役混凝土T梁桥工作性状,提出了在役钢筋混凝土梁桥寿命预测方法,相关研究成果可为此类桥梁寿命预测研究提供理论支持。

关键词: 桥梁工程, 在役混凝土T梁, 疲劳寿命, 阶梯刚度模型, 累积损伤系数

Abstract:

In order to obtain the fatigue stiffness degradation law of in-service concrete T-beams and carry out fatigue life prediction. Based on the theory of damage mechanics, a stepped stiffness model of concrete T-beams including cracking damage was constructed. Through the full-scale model of three 10 m concrete T beams, static and fatigue failure tests were carried out to obtain the evolution law of fatigue residual stiffness with the number of loads. The fatigue damage coefficient and stiffness degradation coefficient were introduced to establish a concrete T beam in service fatigue life prediction model. The analysis results show that with the increase of load, the residual stiffness of the bridge exhibits three-stage decay, in which the initial and later stages of fatigue decay rapidly, but account for a relatively small proportion of the whole life. The result shows that more than 80% of the whole service life is the main stage of bridge service, it is about 82.7% of the initial stiffness at the time of fatigue failure. Finally, according to the working behavior of in-service concrete T-girder bridges, a life prediction method for in-service reinforced concrete girder bridges is proposed, the related research results can provide theoretical support for the study of life prediction of such bridges.

Key words: bridge engineering, in-service concrete T-beam, fatigue life, stepped stiffness model, cumulative damage coefficient

中图分类号: 

  • U448.38

图1

混凝土T梁开裂弯曲裂缝分布示意图"

图2

损伤混凝土T梁阶梯刚度模型"

图3

T梁布置图"

图4

试验梁制作"

表1

试验梁混凝土与钢筋力学性能指标"

材料种类立方体抗压强度/MPa棱柱体抗压强度/MPa屈服强度/MPa弹性模量/104 MPa
C30混凝土36.826.2-3.20
32 mmHRB400--48520.5
28 mmHRB400--46720.5
HPB300--34721.0

图5

试验梁加载"

表2

疲劳试验加载参数"

试验梁编号Pmin/kNPmax/kN应力幅/kN
TLD-150370320
TLD-250370320

图6

试验数据采集设备"

图7

试验梁测点布置图"

图8

TLJ梁荷载-跨中挠度曲线"

表3

试验梁疲劳寿命及最大裂缝宽度"

试验梁编号疲劳寿命/104最大裂缝宽度wmax/mm
TLD-11322.23
TLD-2141.51.75

图9

试验梁破坏形态"

表4

未开裂试验梁基频对比"

试验梁编号基频f/Hz误差/%
试验值理论计算值
TLJ15.0115.231.44
TLD-115.1315.230.66
TLD-214.9615.232.43

表5

不同荷载作用次数下试验梁基频实测值与剩余刚度计算值"

荷载循环次数n/104TLD-1TLD-2
x1/mx2/m基频f/Hz剩余刚度比ηn剩余刚度Bn/(MN·m2x1/mx2/m基频f/Hz剩余刚度比ηn剩余刚度Bn/(MN·m2
0.00.00.015.131.000765.7120.00.014.961.000738.627
10.04.14.114.940.907694.8034.14.214.940.900664.674
20.03.93.914.850.895685.1694.04.014.880.894660.385
30.03.73.614.740.885677.7814.03.914.860.892659.215
40.03.73.514.710.881674.7873.53.714.750.892659.165
50.03.53.414.660.881674.7273.43.414.680.890657.288
60.03.43.214.610.880674.2003.23.214.620.889656.816
70.03.33.114.570.878672.6513.13.014.580.889656.865
80.03.33.114.560.876671.0212.93.014.540.887654.868
90.03.13.014.520.877671.8952.92.814.510.886654.229
100.02.82.614.400.873668.5182.82.814.480.883651.935
110.02.82.614.390.871667.2202.82.614.440.880649.888
120.02.82.614.370.868664.6272.82.614.410.875646.124
130.01.81.514.110.860658.8612.32.214.160.853629.929
132.01.61.513.900.835639.407
140.02.11.813.980.836617.775
141.52.11.813.850.819604.714

图10

试验梁剩余刚度随荷载作用次数变化曲线"

表6

试验梁疲劳试验结果"

试验梁编号初始刚度B0/(MN·m2破坏刚度BNf/(MN·m2刚度比BNf/B0刚度退化率k/(10-4 MN·m2疲劳寿命Nf/104
TLD-1765.712639.4070.8350.271132.0
TLD-2738.672604.7140.8190.241141.5

图11

试验梁疲劳累积损伤系数-循环寿命比曲线"

表7

疲劳寿命预测相对误差"

试验梁编号疲劳寿命/104预测寿命/104相对误差%
TLD-1132.0141.37.0
TLD-2141.5153.38.3
1 交通运输部. 2019年年交通运输行业发展统计公报[R]. 北京:交通运输部, 2020.
2 宋秀华, 肖新辉, 鲁乃唯. 基于疲劳损伤的中小跨径桥梁限载取值研究[J]. 交通科学与工程, 2019, 35(2): 58-63.
Song Xiu-hua, Xiao Xin-hui, Lu Nai-wei. Study on vehicle load limit of medium and small span bridges based on fatigue damage[J]. Journal of Transport Science and Engineering, 2019,35(2): 58-63.
3 卫军, 杜永潇, 梁曼舒. 梁结构疲劳刚度退化对模态频率的影响[J] .浙江大学学报:工学版, 2019, 53(5): 899-909.
Wei Jun, Du Yong-xiao, Liang Man-shu. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(5): 899-909.
4 刘芳平, 易文韬. 钢筋混凝土梁基于疲劳刚度退化的承载力退化模型研究[J]. 建筑结构, 2020, 50(22): 99-104, 66.
Liu Fang-ping, Yi Wen-tao. Research on bearing capacity degr8dation model of reinforced concrete beams based on fatigue stiffness degradation[J]. Building Structure, 2020,50(22): 99-104, 66.
5 汪炳, 黄侨, 刘小玲. 组合梁疲劳后的刚度退化规律及计算模型[J]. 振动与冲击, 2021, 40(6): 265-271.
Wang Bing, Huang Qiao, Liu Xiao-ling. Stiffness degradation and its calculation model for composite beams after fatigue[J]. Journal of Vibration and Shock, 2021, 40(6): 265-271.
6 周虎, 肖勇刚, 谭斌. 基于断裂力学的混凝土桥梁疲劳损伤及寿命评估分析[J]. 湖南城市学院学报: 自然科学版, 2018, 27(4): 6-10.
Zhou Hu, Xiao Yong-gang, Tan Bin. Fatigue damage and life evaluation of concrete bridges based on fracture mechanics[J]. Journal of Hunan City University (Natural Science), 2018, 27(4): 6-10.
7 陈万. 重载交通作用下桥梁结构的疲劳损伤数值分析[D].邯郸: 河北工业大学土木工程学院, 2015.
Chen Wan. Numerical analysis on fatigue damage of bridge caused by heavy load traffic[D]. Handan: School of Civil Engineering, Hebei University of Technology, 2015.
8 赵少杰, 任伟新. 超限超载交通对桥梁疲劳损伤及可靠度的影响[J]. 中南大学学报: 自然科学版, 2017, 48(11): 3044-3050.
Zhao Shao-jie, Ren Wei-xin. Effect of overrun and overloaded vehicles on fatigue damage and reliability of highway bridges[J]. Journal of Central South University (Science and Technology), 2017, 48(11): 3044-3050.
9 Natário F, Fernández R M, Muttoni A. Experimental investigation on fatigue of concrete cantilever bridge deck slabs subjected to concentrated loads[J]. Engineering Structures, 2015, 89: 191-203.
10 Liu Fang-ping, Zhou Jian-ting, Yan Lei. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue[J]. PLoS ONE, 2018, 13(3): No.e0192797.
11 朱红兵. 公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D]. 长沙: 中南大学土木工程学院, 2011.
Zhu Hong-Bing. Method and experiment research on highway reinforced concrete simply-supported girder bridge's fatigue residual service life forecast[D]. Changsha: School of Civil Engineering, Central South University, 2011.
12 刘芳平, 周建庭. 基于疲劳应变演化的混凝土弯曲强度退化分析[J]. 中国公路学报, 2017, 30(4): 97-105.
Liu Fang-ping, Zhou Jian-ting. Concrete bending strength degradation analysis based on fatigues strain evolution[J]. China Journal of Highway and Transport, 2017, 30(4): 97-105.
13 Cheng L J. Flexural fatigue analysis of a CFRP form reinforced concrete bridge deck[J]. Composite Structures, 2011, 93(11):2895-2902.
14 Neild S A, Williams M S, Mcfadden P D. Nonlinear vibration characteristics of damaged concrete beams[J]. Journal of Structural Engineering ASCE, 2003, 129(2): 260-268.
15 曹晖, 郑星, 华建民, 等. 基于非线性振动特性的预应力混凝土 梁损伤识别[J]. 工程力学, 2014, 31(2): 190-194.
Cao Hui, Zheng Xing, Hua Jian-min, et al. Damage detection of prestressed concrete beams based on non-linger dynamic characteristics[J]. Engineering Mechanics, 2014, 31(2): 190-194.
16 卫军, 杜永潇. 基于固有频率的梁结构疲劳损伤演化规律[J]. 中南大学学报: 自然科学版, 2019, 50(8): 1866-1875.
Wei Jun, Du Yong-xiao. Fatigue damage evolution of Timoshenko beams based on natural frequency[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1866-1875.
17 朱红兵, 赵耀, 李秀, 等. 疲劳荷载作用下钢筋混凝土梁的刚度退化规律及计算公式[J].土木建筑与环境工程, 2014, 36(2): 1-13.
Zhu Hong-bing, Zhao Yao, Li Xiu, et al. Reinforced concrete beam's stiffness degeneration regulation and its calculation formula under the action of fatigue load[J]. Journal of Civil, Architectural & Environment Engineering, 2014, 36(2): 1-13.
18 姚恒盈. 装配式预应力混凝土箱梁静动刚度足尺试验全过程分析[D]. 西安:长安大学公路学院, 2020.
Yao Heng-ying. Dynamic and static stiffness analysis of full-scale prefabricated prestressed concrete girder[D]. Xi′an: School of Highway, Chang'an University, 2020.
19 廉伟, 姚卫星.复合材料层压板剩余刚度-剩余强度关联模型[J]. 复合材料学报, 2008, 25(5): 151-156.
Lian Wei, Yao Wei-xing. Residual stiffness-residual strength coupled model of composite laminates[J]. Acta Materiae Composites Sinica, 2008, 25(5): 151-156.
20 Ma Y, Xiang Y, Wang L, et al. Fatigue life prediction for aging RC beams considering corrosive environments[J]. Engineering Structures, 2014(79): 211-221.
[1] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[2] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[3] 王俊,李加武,王峰,张久鹏,黄晓明. 简化U形峡谷风速分布及其对悬索桥抖振响应的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1658-1668.
[4] 王华,王龙林,张子墨,何昕. 基于裂缝宽度变化的连续刚构桥安全性预警技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1650-1657.
[5] 冯宇,郝键铭,王峰,张久鹏,黄晓明. 非平稳极端风作用下大跨桥梁瞬态风致效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1638-1649.
[6] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[7] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[8] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[9] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[10] 袁野. 温度和车辆作用下梁式桥梁结构固有频率分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1702-1710.
[11] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[12] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[13] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
[14] 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495.
[15] 回丽,陆家琛,周松,安金岚,周冠妍,刘小鹏. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .