吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 2015-2025.doi: 10.13229/j.cnki.jdxbgxb.20221128
• 交通运输工程·土木工程 • 上一篇
汪恩良1,2(),任志凤1,2,王储3,刘君巍2,4,刘兴超1,2,田野2,5,邹猛6,卢孜筱7,张伟伟4,姜生元4()
En-liang WANG1,2(),Zhi-feng REN1,2,Chu WANG3,Jun-wei LIU2,4,Xing-chao LIU1,2,Ye TIAN2,5,Meng ZOU6,Zi-xiao LU7,Wei-wei ZHANG4,Sheng-yuan JIANG4()
摘要:
在月球南极永久阴影区内探测水冰物质是我国嫦娥七号的重要任务,为此在地球环境下开展模拟研究,制备极区含水模拟月壤测试样本,并对其月壤模拟物进行超低温条件下的力学特性测试,分析含水率、相对密实度、温度、加载速率及基材配比与抗压强度变化规律。结果明:冻结月壤模拟物的抗压强度随着含水率的增加而增大,随着密实度的增加而增大,随温度降低而增大,受加载速率变化的影响较小,受不同基材配比影响的抗压强度排序为:100%斜长岩<90%斜长岩+10%玄武岩<70%斜长岩+30%玄武岩<100%玄武岩月壤模拟物。最后,通过灰色关联分析探究月壤模拟物含水率、相对密实度、温度、加载速率、配比等基本物理性质指标与抗压强度的关联度,关联度排序为:含水率>密实度>温度>配比>加载速率。本文进行了含水月壤制备及力学特性测试,提出了更加系统规范的实施方案,作为极区含水月壤特性的研究基础,为后续月壤模拟研究提供了理论依据及参考。
中图分类号:
1 | 李雄耀,李阳,唐红,等.月面环境过程研究评述[J].矿物岩石地球化学通报,2019,38(3):438-439,443-458. |
Li Xiong-yao, Li Yang, Tang Hong, et al. A review of environmental processes on lunar surface[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(3):438-439,443-458. | |
2 | Basilevsky A T, Abdrakhimov A M, Dorofeeva V A. Water and other volatiles on the moon: a review[J]. Solar System Research, 2012, 46(2):89-107. |
3 | Needham D, Siegler M, Li S, et al. Calculated thicknesses of volcanically derived water ice deposits at the lunar poles[C]∥ Phoenix, Arizona GSA Annual Conference-2019,Phoenix City,USA,2019: No.341001. |
4 | Needham D H, Kring D A. Lunar volcanism produced a transient atmosphere around the ancient Moon[J]. Earth & Planetary Science Letters, 2017, 478:175-178. |
5 | Jacquet E, Robert F. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites[J]. Icarus, 2013, 223(2):722-732. |
6 | Pitcher C, Kömle N, Leibniz O, et al. Investigation of the properties of icy lunar polar regolith simulants[J]. Advances in Space Research, 2016, 57(5): 1197-1208. |
7 | Pitcher C, Gao Y. Analysis of drill head designs for dual-reciprocating drilling technique in planetary regoliths[J]. Advances in Space Research, 2015, 56(8): 1765-1776. |
8 | Klenhenz J, Linne D. Preparation of a frozen regolith simulant bed for ISRU component testing in a vacuum chamber[C]∥The 51st AIAA Aerospace Sciences Meeting, Greg Wayne, USA, 2013: No.2013-6732. |
9 | Rostami J, Gertsch L, Gustafson R,et al. Properties of frozen soil for excavation on the moon[C]∥SRM International Symposium on 5th Asian Rock Mechanics Symposium,Tehran, Iran,2008: No.181. |
10 | 邹猛,李建桥,刘国敏,等. 模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061. |
Zou Meng, Li Jian-qiao, Liu Guo-min . et al. Experimental study of terra-mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics,2011,32(4):1057-1061. | |
11 | Atkinson J, Zacny K. Mechanical properties of icy lunar regolith: application to ISRU on the moon and mars[C]∥ Earth and Space 2018: Engineering for Extreme Environments. Reston: American Society of Civil Engineers, 2018:109-120. |
12 | 汪恩良,任志凤,韩红卫,等.超低温冻结粘土单轴抗压力学性质试验研究[J].岩土工程学报 2021,43(10):1851-1860. |
Wang En-liang, Ren Zhi-feng, Han Hong-wei . et al. Ex perimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021,43(10):1851-1860. | |
13 | 宫亚峰,申杨凡,谭国金,等.不同孔隙率下纤维土无侧限抗压强度[J].吉林大学学报:工学版,2018,48(3):712-719. |
Gong Ya-feng, Shen Yang-fan, Tan Guo-jin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University(Engineering and Technology Edition), 2018,48(3):712-719. | |
14 | 张勇敢,鲁洋,刘斯宏,等.温度和掺砾量对冻结掺砾黏土单轴压缩特性影响的试验研究[J].岩石力学与工程学报,2019,38(11):2357-2364. |
Zhang Yong-gan, Lu Yang, Liu Si-hong, et al. Influence of temperature and gravel content on uniaxial compressive characteristics of frozen gravel-mixed clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2019,38(11):2357-2364. | |
15 | 杜海民,张淑娟,马巍.高含冰(水)量冻土的单轴抗压强度变化特性研究[J].冰川冻土,2014,36(5):1213-1219. |
Du Hai-min, Zhang Shu-juan, Ma Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice /water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219. | |
16 | 赵程,申向东,贾尚华,等.密实度对压实水泥土强度的影响[J].岩土工程学报,2013,35():360-365. |
Zhao Cheng, Shen Xiang-dong, Jia Shang-hua, et al. Influence of density on strength of cemented soil [J]. Journal of Glaciology and Geocryology, 2013,35(Sup.1):360-365. | |
17 | 黄中伟,位江巍,李根生,等.液氮冻结对岩石抗拉及抗压强度影响试验研究[J].岩土力学,2016,37(3):694-700, 834. |
Huang Zhong-wei, Wei Jiang-wei, Li Gen-sheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing [J]. Rock and Soil Mechanics, 2016,37(3):694-700, 834. | |
18 | 程永春,李赫,李立顶,等.基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J].吉林大学学报:工学版, 2021,51(3):925-935. |
Cheng Yong-chun, Li He, Li Li-ding, et al. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree[J].Journal of Jilin University(Engineering and Technology Edition), 2021,51(3):925-935. | |
19 | Fangfang W. Research on the model and application progress based on grey relational analysis theory[J]. Adv Educ Technol Psychol, 2021 (5): 30-35. |
20 | 刘思峰,郭天榜,党辉国,等.灰色系统理论及其应用[M].北京:科学出版社,2000. |
21 | 杨印生,谢鹏扬,李洪伟.基于DEA的加权灰色关联分析方法[J].吉林大学学报:工学版,2003(1):98-101. |
Yang Yin-sheng, Xie Peng-yang, Li Hong-wei.Weighted gray correlational analysis method based on DEA[J]. Journal of Jilin University(Engineering and Technology Edition), 2003(1):98-101. | |
22 | Ren Z, Liu J, Jiang H, et al. Experimental study and simulation for unfrozen water and compressive strength of frozen soil based on artificial freezing technology[J]. Cold Regions Science and Technology, 2022,205:No.103711. |
23 | Linke S, Windisch L, Kueter N, et al. TUBS-M and TUBS-T based modular regolith simulant system for the support of lunar ISRU activities[J]. Planetary and Space Science, 2020, 180:No. 104747. |
24 | 刘君巍, 汪恩良, 田野, 等. 月壤水冰组构模拟及力学特性测试分析[J]. 深空探测学报, 2022, 9(2): 134-140. |
Liu Jun-wei, Wang En-liang, Tian Ye,et al. Fabric simulation and mechanical characteristics test and analysis of icy lunar regolith[J].Journal of Deep Space Exploration, 2022, 9(2): 134-140. | |
25 | Mitchell J K, Houston W N, Scott R F, et al. Mechanical properties of lunar soil: density, porosity, cohesion and angle,of internal friction[C]∥Lunar and Planetary Science Conference Proceedings, Texas,USA,1972: No.3235. |
26 | Carrier III W D, Olhoeft G R, Mendell W. Physical Properties of the Lunar Surface[M]. Cambridge: Cambridge University Press,1991. |
[1] | 陈凯祥,张鹤年,席培胜,王长丹,余涛,张炳锌. 碳化湿度对碳化砌块力学与耐久性能的影响[J]. 吉林大学学报(工学版), 2024, 54(2): 445-452. |
[2] | 胡震宇,申彦,王卫军,罗小桃,邹猛. 基于车辙图像的CE-4月球车挂钩牵引力判别[J]. 吉林大学学报(工学版), 2023, 53(9): 2474-2482. |
[3] | 田野,李楠楠,刘君巍,姜生元,王储,张伟伟. 基于支持向量机的模拟月壤临界尺度颗粒切削负载识别[J]. 吉林大学学报(工学版), 2023, 53(7): 2143-2151. |
[4] | 谢超,王起才,于本田,李盛,林晓旭,鲁志铭. 聚氨酯涂膜弹性模量的AFM测定及微观结构分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1322-1330. |
[5] | 魏路,高磊,李晋宏,杨建,田玉林. 基于密度峰值聚类的交通控制子区划分方法[J]. 吉林大学学报(工学版), 2023, 53(1): 124-131. |
[6] | 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244. |
[7] | 薛龙,姚猛,李立犇,李因武,邓湘金,李建桥,邹猛. 基于触月压痕的表层月壤力学状态试验分析[J]. 吉林大学学报(工学版), 2022, 52(3): 497-503. |
[8] | 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882. |
[9] | 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635. |
[10] | 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152. |
[11] | 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935. |
[12] | 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593. |
[13] | 曲大义,贾彦峰,刘冬梅,杨晶茹,王五林. 考虑多特性因素的路网交叉口群动态划分方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1478-1483. |
[14] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[15] | 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442. |
|