吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 2015-2025.doi: 10.13229/j.cnki.jdxbgxb.20221128

• 交通运输工程·土木工程 • 上一篇    

基于灰色关联分析模拟月壤抗压强度性能试验

汪恩良1,2(),任志凤1,2,王储3,刘君巍2,4,刘兴超1,2,田野2,5,邹猛6,卢孜筱7,张伟伟4,姜生元4()   

  1. 1.东北农业大学 水利与土木工程学院,哈尔滨 150030
    2.星壤水冰分析测试联合实验室,哈尔滨 150030
    3.中国空间技术研究院,北京空间飞行器总体设计部,北京 100094
    4.哈尔滨工业大学 宇航空间机构及控制研究中心,哈尔滨 150001
    5.哈尔滨商业大学 轻工学院,哈尔滨 150028
    6.吉林大学 工程仿生教育部重点实验室,长春 130022
    7.国家纳米科学中心,北京 100190
  • 收稿日期:2022-08-31 出版日期:2024-07-01 发布日期:2024-08-05
  • 通讯作者: 姜生元 E-mail:hljwel@126.com;jiangshy@hit.edu.cn
  • 作者简介:汪恩良(1971-),男,教授,博士.研究方向:工程冻土及月球水冰模拟样本制备工艺及其装置研制.E-mail: hljwel@126.com
  • 基金资助:
    国家自然科学基金委联合基金项目(U2013603);NSFC-深圳机器人基础研究中心项目(52005136)

Experiment on compressive strength of simulated lunar soil based on grey correlation analysis

En-liang WANG1,2(),Zhi-feng REN1,2,Chu WANG3,Jun-wei LIU2,4,Xing-chao LIU1,2,Ye TIAN2,5,Meng ZOU6,Zi-xiao LU7,Wei-wei ZHANG4,Sheng-yuan JIANG4()   

  1. 1.School of Water Conservancy and Civil Engineering,Northeast Agricultural University,Harbin 150030,China
    2.HIT-NEAU Joint Laboratory of Planetary Icy Regolith Analysis and Measurement,Harbin 150030,China
    3.Beijing Space Vehicle General Design Department,China Institute of Space Technology,Beijing 100094,China
    4.Aerospace Mechanism and Control Research Center,Harbin Institute of Technology,Harbin 150001,China
    5.Light Industry College,Harbin University of Commerce,Harbin 150028,China
    6.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
    7.National Center for Nanoscience and Technology,Beijing 100190,China
  • Received:2022-08-31 Online:2024-07-01 Published:2024-08-05
  • Contact: Sheng-yuan JIANG E-mail:hljwel@126.com;jiangshy@hit.edu.cn

摘要:

在月球南极永久阴影区内探测水冰物质是我国嫦娥七号的重要任务,为此在地球环境下开展模拟研究,制备极区含水模拟月壤测试样本,并对其月壤模拟物进行超低温条件下的力学特性测试,分析含水率、相对密实度、温度、加载速率及基材配比与抗压强度变化规律。结果明:冻结月壤模拟物的抗压强度随着含水率的增加而增大,随着密实度的增加而增大,随温度降低而增大,受加载速率变化的影响较小,受不同基材配比影响的抗压强度排序为:100%斜长岩<90%斜长岩+10%玄武岩<70%斜长岩+30%玄武岩<100%玄武岩月壤模拟物。最后,通过灰色关联分析探究月壤模拟物含水率、相对密实度、温度、加载速率、配比等基本物理性质指标与抗压强度的关联度,关联度排序为:含水率>密实度>温度>配比>加载速率。本文进行了含水月壤制备及力学特性测试,提出了更加系统规范的实施方案,作为极区含水月壤特性的研究基础,为后续月壤模拟研究提供了理论依据及参考。

关键词: 地面力学, 含水月壤模拟物, 抗压强度, 灰色关联理论, 关联度

Abstract:

The primary objective of the Chang'e-7 mission is to detect water ice in the permanently shadowed regions of the Moon's south pole. This study involves conducting simulation research within an Earth-based environment, preparing test samples of polar hydrous simulated lunar soil, and assessing the mechanical properties of these simulants under ultra-low temperatures. Additionally, it analyzes how various factors—including moisture content, compactness, temperature, loading rate, substrate composition, and compressive strength—interact. The results indicate that the compressive strength of the frozen lunar soil simulants increases with higher moisture content, greater compactness, and lower temperatures, while it is less influenced by variations in loading rate. The compressive strength is affected by substrate composition in the following order:100% plagioclase <90% plagioclase +10% basaltic <70% plagioclase +30% basaltic <100% basaltic lunar soil simulant. Furthermore, this study employs grey correlation analysis to explore the relationships among fundamental physical property indices such as moisture content, compactness, temperature, loading rate, substrate ratio, and compressive strength. The analysis reveals the following order of correlation strength: moisture content>compactness>temperature>substrate ratio>loading rate. This paper not only examines the preparation and mechanical properties of aqueous lunar soil but also proposes a more systematic and standardized implementation scheme. This serves as a foundational basis for understanding the characteristics of polar aqueous lunar soil, providing valuable theoretical insights and references for subsequent lunar soil simulation research..

Key words: terramechanics, hydrous lunar soil simulant, compressive strength, grey correlation theory, correlation degree

中图分类号: 

  • TU441

表1

斜长岩模拟月壤成分和粒径指标"

物质组成形态比重压缩指数颗粒级配/%
中值粒径/μmCuCc
斜长石,其他镁铁矿物棱角状2.940.3741.910.95

表2

玄武岩模拟月壤成分和粒径指标"

物质组成形态比重颗粒级配/%
中值粒径/μmCuCc
玄武质火山渣,钛铁矿和橄榄石矿等棱角次棱角状2.7388.3310.810.92

图1

月壤模拟物烘干示意图"

图2

月壤模拟物搅拌示意图"

图3

月壤模拟物静置示意图"

图4

月壤模拟物击实示意图"

图5

月壤模拟物冻结示意图"

图6

超低温月壤力学特性测试系统"

图7

不同含水率月壤模拟物抗压强度图"

图8

不同密实度月壤模拟物抗压强度图"

图9

不同温度月壤模拟物抗压强度图"

图10

不同加载速率月壤模拟物抗压强度图"

图11

不同基材配比月壤模拟物抗压强度图"

表3

灰色系统序列表"

编号斜长岩占比/%含水率/%温度/℃相对密实度/%加载速率/(mm·min-1强度/MPa
11005-190991017.74
210010-190991027.41
310015.50-190991053.16
410010-1099105.76
510010-30991013.65
610010-50991016.62
710010-70991019.28
810010-230991028.84
910010-190701015.32
1010010-190861024.45
1110010-190993027.19
1210010-190992531.91
1310010-190992028.08
1410010-190991533.89
1510010-19099531.66
1610010-19099122.68
179015.50-190991053.57
187015.50-190991060.44
19015.50-190991067.34

表4

关联系数表"

斜长岩占比含水率温度相对密实度加载速率
第1项0.6880.9010.6440.7130.808
第2项0.8570.9810.7900.8970.952
第3项0.6260.7770.6670.6060.551
第4项0.5530.6010.8960.5690.628
第5项0.6350.7000.8060.6560.736
第6项0.6720.7460.8210.6970.787
第7项0.7100.7930.8420.7370.840
第8项0.9450.9180.7440.9940.863
第9项0.6550.7250.6160.8320.764
第10项0.7970.9030.7390.9250.964
第11项0.8520.9740.7860.8910.403
第12项0.9680.8980.8840.9820.510
第13项0.8721.0000.8030.9130.590
第14项0.9750.8530.9320.9280.878
第15项0.9610.9040.8780.9890.642
第16项0.7650.8620.7110.7960.626
第17项0.5850.7700.6620.6020.547
第18项0.4740.6660.5830.5360.492
第19项0.3330.5860.5210.4830.447

表5

关联度排名结果"

评价项关联度排名
斜长岩占比/%0.7334
含水率/%0.8191
温度/℃0.7543
相对密实度/%0.7762
加载速率/(mm·min-10.6865

图12

各评价项排名"

表6

南极永久阴影区月壤基本物理参数[25,26]"

序号参数基本物理参数
1密实度平均密度为1.4~1.8 g/cm3,相对密度为2.76~2.86 g/cm3
2温度月球极区夏季最高温度可达308 K,冬季最低温度约为10 K,夏季平均温度为201 K,冬季平均温度为42 K
3含水率月球永久阴影区月壤水冰富集深度大于1.8 m,根据M3、LCROSS等探测任务发现,其含水率在1%以上,最高超过5.6%
1 李雄耀,李阳,唐红,等.月面环境过程研究评述[J].矿物岩石地球化学通报,2019,38(3):438-439,443-458.
Li Xiong-yao, Li Yang, Tang Hong, et al. A review of environmental processes on lunar surface[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(3):438-439,443-458.
2 Basilevsky A T, Abdrakhimov A M, Dorofeeva V A. Water and other volatiles on the moon: a review[J]. Solar System Research, 2012, 46(2):89-107.
3 Needham D, Siegler M, Li S, et al. Calculated thicknesses of volcanically derived water ice deposits at the lunar poles[C]∥ Phoenix, Arizona GSA Annual Conference-2019,Phoenix City,USA,2019: No.341001.
4 Needham D H, Kring D A. Lunar volcanism produced a transient atmosphere around the ancient Moon[J]. Earth & Planetary Science Letters, 2017, 478:175-178.
5 Jacquet E, Robert F. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites[J]. Icarus, 2013, 223(2):722-732.
6 Pitcher C, Kömle N, Leibniz O, et al. Investigation of the properties of icy lunar polar regolith simulants[J]. Advances in Space Research, 2016, 57(5): 1197-1208.
7 Pitcher C, Gao Y. Analysis of drill head designs for dual-reciprocating drilling technique in planetary regoliths[J]. Advances in Space Research, 2015, 56(8): 1765-1776.
8 Klenhenz J, Linne D. Preparation of a frozen regolith simulant bed for ISRU component testing in a vacuum chamber[C]∥The 51st AIAA Aerospace Sciences Meeting, Greg Wayne, USA, 2013: No.2013-6732.
9 Rostami J, Gertsch L, Gustafson R,et al. Properties of frozen soil for excavation on the moon[C]∥SRM International Symposium on 5th Asian Rock Mechanics Symposium,Tehran, Iran,2008: No.181.
10 邹猛,李建桥,刘国敏,等. 模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061.
Zou Meng, Li Jian-qiao, Liu Guo-min . et al. Experimental study of terra-mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics,2011,32(4):1057-1061.
11 Atkinson J, Zacny K. Mechanical properties of icy lunar regolith: application to ISRU on the moon and mars[C]∥ Earth and Space 2018: Engineering for Extreme Environments. Reston: American Society of Civil Engineers, 2018:109-120.
12 汪恩良,任志凤,韩红卫,等.超低温冻结粘土单轴抗压力学性质试验研究[J].岩土工程学报 2021,43(10):1851-1860.
Wang En-liang, Ren Zhi-feng, Han Hong-wei . et al. Ex perimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021,43(10):1851-1860.
13 宫亚峰,申杨凡,谭国金,等.不同孔隙率下纤维土无侧限抗压强度[J].吉林大学学报:工学版,2018,48(3):712-719.
Gong Ya-feng, Shen Yang-fan, Tan Guo-jin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University(Engineering and Technology Edition), 2018,48(3):712-719.
14 张勇敢,鲁洋,刘斯宏,等.温度和掺砾量对冻结掺砾黏土单轴压缩特性影响的试验研究[J].岩石力学与工程学报,2019,38(11):2357-2364.
Zhang Yong-gan, Lu Yang, Liu Si-hong, et al. Influence of temperature and gravel content on uniaxial compressive characteristics of frozen gravel-mixed clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2019,38(11):2357-2364.
15 杜海民,张淑娟,马巍.高含冰(水)量冻土的单轴抗压强度变化特性研究[J].冰川冻土,2014,36(5):1213-1219.
Du Hai-min, Zhang Shu-juan, Ma Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice /water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219.
16 赵程,申向东,贾尚华,等.密实度对压实水泥土强度的影响[J].岩土工程学报,2013,35():360-365.
Zhao Cheng, Shen Xiang-dong, Jia Shang-hua, et al. Influence of density on strength of cemented soil [J]. Journal of Glaciology and Geocryology, 2013,35(Sup.1):360-365.
17 黄中伟,位江巍,李根生,等.液氮冻结对岩石抗拉及抗压强度影响试验研究[J].岩土力学,2016,37(3):694-700, 834.
Huang Zhong-wei, Wei Jiang-wei, Li Gen-sheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing [J]. Rock and Soil Mechanics, 2016,37(3):694-700, 834.
18 程永春,李赫,李立顶,等.基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J].吉林大学学报:工学版, 2021,51(3):925-935.
Cheng Yong-chun, Li He, Li Li-ding, et al. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree[J].Journal of Jilin University(Engineering and Technology Edition), 2021,51(3):925-935.
19 Fangfang W. Research on the model and application progress based on grey relational analysis theory[J]. Adv Educ Technol Psychol, 2021 (5): 30-35.
20 刘思峰,郭天榜,党辉国,等.灰色系统理论及其应用[M].北京:科学出版社,2000.
21 杨印生,谢鹏扬,李洪伟.基于DEA的加权灰色关联分析方法[J].吉林大学学报:工学版,2003(1):98-101.
Yang Yin-sheng, Xie Peng-yang, Li Hong-wei.Weighted gray correlational analysis method based on DEA[J]. Journal of Jilin University(Engineering and Technology Edition), 2003(1):98-101.
22 Ren Z, Liu J, Jiang H, et al. Experimental study and simulation for unfrozen water and compressive strength of frozen soil based on artificial freezing technology[J]. Cold Regions Science and Technology, 2022,205:No.103711.
23 Linke S, Windisch L, Kueter N, et al. TUBS-M and TUBS-T based modular regolith simulant system for the support of lunar ISRU activities[J]. Planetary and Space Science, 2020, 180:No. 104747.
24 刘君巍, 汪恩良, 田野, 等. 月壤水冰组构模拟及力学特性测试分析[J]. 深空探测学报, 2022, 9(2): 134-140.
Liu Jun-wei, Wang En-liang, Tian Ye,et al. Fabric simulation and mechanical characteristics test and analysis of icy lunar regolith[J].Journal of Deep Space Exploration, 2022, 9(2): 134-140.
25 Mitchell J K, Houston W N, Scott R F, et al. Mechanical properties of lunar soil: density, porosity, cohesion and angle,of internal friction[C]∥Lunar and Planetary Science Conference Proceedings, Texas,USA,1972: No.3235.
26 Carrier III W D, Olhoeft G R, Mendell W. Physical Properties of the Lunar Surface[M]. Cambridge: Cambridge University Press,1991.
[1] 陈凯祥,张鹤年,席培胜,王长丹,余涛,张炳锌. 碳化湿度对碳化砌块力学与耐久性能的影响[J]. 吉林大学学报(工学版), 2024, 54(2): 445-452.
[2] 胡震宇,申彦,王卫军,罗小桃,邹猛. 基于车辙图像的CE-4月球车挂钩牵引力判别[J]. 吉林大学学报(工学版), 2023, 53(9): 2474-2482.
[3] 田野,李楠楠,刘君巍,姜生元,王储,张伟伟. 基于支持向量机的模拟月壤临界尺度颗粒切削负载识别[J]. 吉林大学学报(工学版), 2023, 53(7): 2143-2151.
[4] 谢超,王起才,于本田,李盛,林晓旭,鲁志铭. 聚氨酯涂膜弹性模量的AFM测定及微观结构分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1322-1330.
[5] 魏路,高磊,李晋宏,杨建,田玉林. 基于密度峰值聚类的交通控制子区划分方法[J]. 吉林大学学报(工学版), 2023, 53(1): 124-131.
[6] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[7] 薛龙,姚猛,李立犇,李因武,邓湘金,李建桥,邹猛. 基于触月压痕的表层月壤力学状态试验分析[J]. 吉林大学学报(工学版), 2022, 52(3): 497-503.
[8] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[9] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[10] 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152.
[11] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[12] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[13] 曲大义,贾彦峰,刘冬梅,杨晶茹,王五林. 考虑多特性因素的路网交叉口群动态划分方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1478-1483.
[14] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[15] 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!