吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2460-2468.doi: 10.13229/j.cnki.jdxbgxb.20221503

• 车辆工程·机械工程 • 上一篇    

中国空间站燃烧科学柜火焰传播速度地面测量试验

方钰1,2(),梅德清3,郑会龙1,杨肖芳1,武海龙4,张晓武1   

  1. 1.中国科学院 工程热物理研究所,北京 100190
    2.中国科学院大学 工程科学学院,北京 100049
    3.江苏大学 汽车与交通工程学院,江苏 镇江 212013
    4.沈阳航空航天大学 能源与环境学院,沈阳 110136
  • 收稿日期:2022-11-24 出版日期:2024-09-01 发布日期:2024-10-28
  • 作者简介:方钰(1997-),男,博士研究生.研究方向:光学燃烧诊断.E-mail:yufangyf@hotmail.com
  • 基金资助:
    中国载人航天工程计划空间站燃烧科学实验系统项目

Groundbased experiments of measuring flame speed for combustion science rack aboard china space station

Yu FANG1,2(),De-qing MEI3,Hui-long ZHENG1,Xiao-fang YANG1,Hai-long WU4,Xiao-wu ZHANG1   

  1. 1.Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China
    3.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
    4.School of Energy and Environment,Shenyang Aerospace University,Shengyang 110136,China
  • Received:2022-11-24 Online:2024-09-01 Published:2024-10-28

摘要:

基于本生火焰法,结合数字图像处理技术,应用中国空间站燃烧科学柜开展了甲烷和乙烯火焰传播速度地面测量试验,以期为将来的天地(微重力-常重力)燃烧对比试验提供地面数据,并为燃烧科学柜在轨科学研究奠定基础。结果表明:随着当量比的升高,火焰传播速度先上升后下降,火焰高度先下降后上升,二者均在当量比为1.04左右取得最值。甲烷预混燃烧的最高火焰传播速度约为37.36 cm/s,乙烯预混燃烧的最高火焰传播速度约为67.58 cm/s,后者约为前者的1.81倍。当量比一定时,未燃混合气出口流量或出口雷诺数的改变不会引起火焰传播速度的变化,但会显著影响火焰的高度。

关键词: 动力机械及工程, 燃烧科学柜, 火焰传播速度, 本生火焰, 图像处理

Abstract:

Based on the Bunsen flame method and digital image processing technology, the ground-based experiments for measuring the flame speed of methane and ethylene were carried out using combustion science rack aboard china space station, to provide ground data for future comparison of space-ground (microgravity-normal gravity) combustion experiments, and to lay the foundation for the on-orbit combustion scientific research of Combustion Science Rack. According to the results, as the equivalence ratio increased, the flame speed increased first and then decreased, but the flame height decreased first and then increased, both of which reached their maximum or minimum value at around the equivalent ratio of 1.04. The maximum flame speed of methane premixed combustion was approximately 37.36 cm/s, while that of ethylene premixed combustion was approximately 67.58 cm/s, with the latter being about 1.81 times higher than the former. As the equivalence ratio was constant, the variation of outlet flow rates and Reynolds number of unburn air-fuel mixture gave a noticeable change in flame height but did not affect the flame speed.

Key words: power machinery and engineering, combustion science rack, flame speed, Bunsen flame, image processing

中图分类号: 

  • V419/TK16

图1

光学诊断设备位置分布"

表1

光学诊断设备主要性能参数"

参数数值
最大分辨率1 296×1 024
最大帧率(全分辨率)/(f·s-13 096
曝光时间/μs1.5~40 000
光谱范围/nm290~1 100
感光度/ISO160~6400

图2

外部工质供应系统"

图3

本生火焰结构"

图4

火焰图像预处理"

图5

火焰边缘检测与优化"

图6

火焰边缘线性拟合"

图7

火焰边缘检测"

图8

火焰边缘多项式拟合"

图9

火焰面积法与火焰锥角法计算结果对比"

图10

本文结果与其他文献结果对比"

表2

不同当量比下甲烷与乙烯预混燃烧试验工况"

工况当量比ΦCH4流量/(L·min-1

空气流量/

(L·min-1

工况当量比ΦC2H4流量/(L·min-1

空气流量/

(L·min-1

10.800.4995.940230.720.2995.940
20.840.5245.940240.760.3165.940
30.880.5495.940250.800.3335.940
???5.940???5.940
201.560.9735.940441.560.6495.940
211.600.9985.940451.600.6665.940
221.641.0235.940461.640.6825.940

图11

不同当量比下的甲烷与乙烯火焰图像"

图12

不同当量比下的甲烷与乙烯火焰传播速度与火焰高度"

表3

不同出口流量下的甲烷预混燃烧试验工况"

工况当量比ΦCH4流量/(L·min-1空气流量Qair/(L·min-1出口流量/(L·min-1
10.840.4194.7525.171
20.5245.9406.464
30.6297.1287.757
41.000.4994.7525.251
50.6245.9406.564
60.7497.1287.877
71.160.5794.7525.331
80.7245.9406.664
90.8697.1287.997
101.320.6594.7525.411
110.8245.9406.764
120.9887.1288.116

图13

不同出口流量下的甲烷火焰图像"

图14

不同出口流量下的甲烷火焰传播速度和火焰高度"

表4

不同出口雷诺数下甲烷预混燃烧试验工况"

工况当量比ΦCH4流量/(L·min-1空气流量/(L·min-1燃烧器喷口直径d/mm雷诺数Re
11.040.6495.94010961
271 373
31.120.6995.94010965
471379
51.200.7495.94010970
671 385
71.280.7995.94010974
871 391

图15

不同出口雷诺数下的甲烷火焰图像"

图16

不同出口雷诺数下的甲烷火焰传播速度和火焰高度"

1 张晓武,郑会龙,王琨,等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报,2021,41(2):301-309.
Zhang Xiao-wu, Zheng Hui-long, Wang Kun, et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309.
2 商兰, 王宝瑞, 刘闯, 等. 微重力燃烧实验系统多功能支撑平板结构设计[J]. 空间科学学报,2018,38(4): 524-529.
Shang Lan, Wang Bao-rui, Liu Chuang, et al. Structure design of multifunctional supporting bench in the microgravity combustion science experimental system[J]. Chinese Journal of Space Science, 2018, 38(4): 524-529.
3 Ando S, Wu Y, Nakaya S, et al. Droplet combustion behavior of oxidatively degraded methyl laurate and methyl oleate in microgravity[J]. Combustion and Flame, 2020, 214: 199-210.
4 Wu C, Sun P, Wang X, et al. Flame extinction of spherical PMMA in microgravity: effect of fuel diameter and conduction[J]. Microgravity Science and Technology, 2020, 32(6): 1065-1075.
5 Masato M, Kodai M, Yasuko Y, et al. Space-based microgravity experiments on flame spread over randomly distributed n-decane-droplet clouds: anomalous behavior in flame spread[J]. Proceedings of the Combustion Institute, 2020, 38(2): 3167-3174.
6 Ju Y, Reuter C, Yehia O, et al. Dynamics of cool flames[J]. Progress in Energy and Combustion Science, 2019, 75: 1-39.
7 Vagelopoulos C, Egolfopoulos F. Direct experimental determination of laminar flame speeds[J]. Symposium on Combustion, 1998, 27(1): 513-519.
8 王峰. 富氧燃烧中CO2对烷烃C1-C3火焰传播速度的影响[D]. 武汉: 华中科技大学能源与动力工程学院, 2018: 5-6.
Wang Feng. The effects of CO2 on the laminar flame speed of C1-C3 alkanes in O2/CO2 atmospheres [D]. Wuhan: School of Energy and Power Engineering, Huazhong University of Science and Technology,2018: 5-6.
9 Maaren V, Thung D, Goeyl D. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994, 96(4-6): 327-344.
10 Gu X, Haq M, Lawes M, et al. Laminar burning velocity and markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000, 121(1-2): 41-58.
11 付敏, 王林, 任常兴. 基于MATLAB图像处理的层流火焰传播速度研究[J]. 安全与环境学报, 2017, 17(4): 1354-1359.
Fu Min, Wang Lin, Ren Chang-xing. Study on the laminar flame spreading speed based on the MATLAB image process ing technology[J]. Journal of Safety and Environmen, 2017, 17(4): 1354-1359.
12 Law C. A Compilation of Experimental Data on Laminar Burning Velocities[M]. Berlin, Heidelberg: Springer, 1993.
13 王晓东. 基于定容燃烧弹的甲烷-氧气-水蒸气混合气的层流火焰特性研究[D]. 合肥: 合肥工业大学汽车与交通工程学院, 2019: 35-38.
Wang Xiao-dong. Laminar flame characteristics research of methane-oxygen-water mixture based on constant volume combustion bomb[D]. Hefei: School of Automotive and Transportation Engineering, Hefei University of Technology,2019: 35-38.
14 Andrews G, Bradley D. The burning velocity of methane-air mixtures[J]. Combustion and Flame, 1972, 19(2): 275-288.
15 Mohamad M, James C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature[J]. Combustion and Flame, 1982, 48: 191-210.
16 Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas[J]. Fuel, 2009, 88(3): 528-533.
17 肖迪,廉静,纪少波,等. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报: 工学版,2017,47(4):59-63.
Xiao Di, Lian Jing, Ji Shao-bo, et al. Influence of ozone addition on laminar flame speed in methane-air lean mixtures[J]. Journal of Shandong University (Engineering Science), 2017, 47(4): 59-63.
18 王岩,王宝瑞,王岳. 流预混火焰自由基特性研究[J]. 光谱学与光谱分析,2022,42(8):2403-2410.
Wang Yan, Wang Bao-rui, Wang Yue. Study on radical characteristics of methane laminar premixed flame based on hyperspectral technology[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2403-2410.
19 秦静, 徐鹤, 裴毅强, 等. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报: 工学版, 2018, 48(5): 1475-1482.
Qin Jing, Xu He, Pei Yi-qiang, et al. Influence of initial temperature and initial pressure on premixed laminar burning characteristics of methane-dissociated methanol flames[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1475-1482.
[1] 王德兴,高凯,袁红春,杨钰锐,王越,孔令栋. 基于色彩校正和TransFormer细节锐化的水下图像增强[J]. 吉林大学学报(工学版), 2024, 54(3): 785-796.
[2] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[3] 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648.
[4] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[5] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[6] 荣鑫,刘洪海,殷作耀,林海翔,边庆华. 基于图像处理的集料级配在线检测方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2847-2855.
[7] 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421.
[8] 贾海洋,夏睿,吕安祺,管噌璇,陈娟,王雷. 基于模板融合的超声医学影像全景拼接方法[J]. 吉林大学学报(工学版), 2022, 52(4): 916-924.
[9] 顾忠华,颜培刚,刘泮宏,王祥锋. 应用数据驱动算法提高涡粘模型分离流动模拟精度[J]. 吉林大学学报(工学版), 2022, 52(11): 2532-2541.
[10] 汤东,韩宇彬,华伦,潘金冲,刘胜. 润滑油灰分对直喷汽油机颗粒捕集器性能影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2501-2507.
[11] 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152.
[12] 李健,刘孔宇,任宪盛,熊琦,窦雪峰. 基于自适应阈值的Canny算法在MRI边缘检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 712-719.
[13] 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330.
[14] 王乔,孙万臣,郭亮,程鹏,范鲁艳,李国良. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1920-1928.
[15] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!