Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1915-1922.doi: 10.13229/j.cnki.jdxbgxb.20230938

Previous Articles     Next Articles

Influence of contact thermal resistance on temperature rise characteristics of high⁃speed ball screw

Ge-dong JIANG1,2(),Hao WANG1,Ya-bin JING1   

  1. 1.School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China
    2.Shaanxi Provincial Key Laboratory of Intelligent Robots,Xi'an 710049,China
  • Received:2023-09-05 Online:2025-06-01 Published:2025-07-23

Abstract:

Based on the MB fractal theory, the contact thermal resistance of the raceway contact surface was determined, and a finite element model for thermal analysis of high-speed ball screw pairs considering contact thermal resistance was established. The temperature rise characteristics of ball screw pairs under different contact thermal resistances were analyzed through simulation calculations. The results indicate that the highest temperature of the screw is concentrated at the joint between the front bearing and the ball raceway, while the peak temperature of the ball and nut is concentrated in the middle of the raceway. The change in contact resistance has a significant impact on the steady-state temperature of the ball and nut. As the contact resistance increases, the steady-state temperatures of the ball and nut both increase significantly. The above work provides a theoretical basis for studying the temperature rise control and cooling lubrication methods of high-speed ball screws.

Key words: mechanical engineering, ball screw, contact thermal resistance, finite element analysis

CLC Number: 

  • TH132

Fig.1

Grid division results at bearing joints"

Fig.2

Mesh division results of ball screw"

Fig.3

Cloud map of steady-state temperature field distribution of lead screw"

Fig.4

Curve of surface temperature variation with axial distance in travel section of nut"

Fig.5

Modeling of ball screw"

Table 1

Material parameters of ball screw"

参数数值
密度/(kg·m-37 800
热膨胀系数/°C-11.15×10-5
杨氏模量/Pa2.07×1011
泊松比0.3
热导率/[W?(m?°C)-140.1
比热容/[J?(kg?°C)-1460

Table 2

Boundary condition loading values"

边界条件载荷数值
前轴承发热/(W·m-2)5 743
后轴承发热/(W·m-2)4 435
滚珠摩擦生热率/(W·m-2)8 860
丝杠与空气的对流换热率/[W·(m2?°C)-1]75
初始温度/oC22

Table 3

Contact thermal resistance loading value"

组别接触热阻值/[(m2·℃)·W-1热导率/[W·(m·℃)-1
11.6×10-3625.0
21.02×10-3980.4
35.297×10-41 888
43.215×10-43 110
51.98×10-45 051

Fig.6

Finite element model of friction heat generation in ball screw"

Fig.7

Steady state temperature field of screw"

Fig.8

Steady state temperature field of nuts"

Fig.9

Steady state temperature field of joint surface ball"

Fig.10

Changes in axial surface temperature ofscrewsunder different contact thermal resistance values"

Fig.11

Ball position serial number"

Fig.12

Influence of contact thermal resistance on temperature rise of ball at different positions"

Fig.13

Curve of temperature change on the inner surface of nuts with axial distance variation"

Fig.14

Curve of thermal elongation of screw with axial distance variation"

[1] 刘璐, 周华西, 陈传海, 等. 基于竞争失效模型的滚珠丝杠副可靠性设计建模[J]. 吉林大学学报: 工学版, 2022, 52(2): 458-465.
Liu Lu, Zhou Hua-xi, Chen Chuan-hai, et al. Reliability design model of ball screws based on competition failure[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 458-465.
[2] 程强, 王畅, 齐宝宝, 等. 虑及结构参数误差的滚珠丝杠接触载荷建模与分析[J]. 吉林大学学报: 工学版, 2022, 52(2): 353-360.
Cheng Qiang, Wang Chang, Qi Bao-bao, et al. Modeling and analysis of contact load of ball screw with error of structural parameters[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 353-360.
[3] 夏军勇, 吴波, 胡友民, 等. 多变化热源下的滚珠丝杠热动态特性[J]. 中国机械工程, 2008(8): 955-958.
Xia Jun-Yong, Wu Bo, Hu You-min, et al. The thermal dynamic characteristic of ball-screw under the variational muti-thermal source[J]. China Mechanical Engineering, 2008(8): 955-958.
[4] Su D X, Li Y, Zhao W H, et al. Transient thermal error modeling of a ball screw feed system[J]. International Journal of Advanced Manufacturing Technology, 2023, 124(7/8): 2095-2107.
[5] Wang H T, Li F H, Cai Y L, et al. Experimental and theoretical analysis of ball screw under thermal effect[J]. Tribology International, 2020, 152: No.106503.
[6] 张义民, 王孟卓, 李铁军. 不同温升下受轴向载荷的球轴承内部接触热阻计算方法[J]. 机械设计与制造, 2021(5): 128-132.
Zhang Yi-min, Wang Meng-zhuo, Li Tie-jun. Internal contact thermal resistance calculation method of ball bearings subjected to axial load at different temperatures rise[J]. Machinery Design & Manufacture, 2021(5): 128-132.
[7] Gao X S, Ma J Q, Li Q, et al. Modeling of thermal contact resistance of ball screws considering the load distribution of balls[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(4): 1-13.
[8] Gao X S, Wang M, Liu X B. Modeling and application of thermal contact resistance of ball screws[J]. Journal of Central South University, 2019, 26(1): 168-183.
[9] Yang J, Zhang D S, Mei X S, et al. Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 229(1): 43-63.
[10] Min X, Jiang S. A thermal model of a ball screw feed drive system for a machine tool[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011, 225: 186-193.
[11] Bossmanns B, Tu J F. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1345-1366.
[12] 葛世荣, 朱华. 摩擦学的分形[M]. 北京: 机械工业出版社, 2005.
[13] 王润琼, 朱立达, 朱春霞. 基于域扩展因子和微凸体相互作用的结合面接触刚度模型研究[J]. 机械工程学报, 2018, 54(19): 88-95.
Wang Run-qiong, Zhu Li-da, Zhu Chun-xia. Investigation of contact stiffness model for joint surfaces based on domain expansion factor and asperity interaction[J]. Journal of Mechanical Engineering, 2018, 54(19): 88-95.
[14] Liu J L, Ma C, Wang S L, et al. Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 471-495.
[15] 胡冕, 丁晓红. 热管滚珠丝杠热性能仿真和实验[J]. 中国机械工程, 2020, 31(20): 2445-2453.
Hu Mian, Ding Xiao-hong. Numerical and experiental investigations of thermal performance for heat pipe ball screws[J]. China Mechanical Engineering, 2020, 31(20): 2445-2453.
[1] Yong-gang WANG,He-jian LIU,Chuan-yang WANG,Lei WANG,Run-dong QIAN,Dong-ya LI,Yi-jun DONG. Hot corrosion behaviors of CrCoNi medium entropy alloy by laser melting deposition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1544-1551.
[2] Chang-long ZHAO,Chen MA,Jun-bao YANG,Qin-xiang ZHAO,Xiao-yu JIA,Hong-nan MA. Influence of pre⁃set surface texture on laser cladding of 316L coatings [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 899-911.
[3] Lei SHANG,Ping YANG,Xiang-guo YANG,Jian-xin PAN,Jun YANG,Meng-ru ZHANG. Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2401-2413.
[4] Hua-min LIU,Shu-han YANG,Yi LI,Ce LIANG,Qi-gang Han. Thrust rod ball hinge bionic surface improvement and finite element analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2733-2740.
[5] Lin JIANG,Guo-long LI,Shi-long WANG,Kai XU,Zhe-yu LI. Thermal expansion error modeling of feed axis based on principal component regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2149-2155.
[6] Ze-qiang ZHANG,Can WANG,Jun-qi LIU,Dan JI,Si-lu LIU. Parallel row ordering problem based on improved sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1851-1861.
[7] Cai-xia SHU,Jia YANG,Qing-xi LIAO,Xing-yu WAN,Jia-cheng YUAN. Design and experiment of diversion type double-cylinder cyclone separation system for rapeseed combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1807-1820.
[8] Li HUI,Lei JIN,Wan-wan SONG,Song ZHOU,Jin-lan AN. Crack growth rate of SMA490BW steel in different welding areas for bogie [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 650-656.
[9] Zhi-jun YANG,Chi ZHANG,Guan-xin HUANG. Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 385-393.
[10] Yun-tong LI,Xing-yu WAN,Qing-xi LIAO,Yin-lei LIU,Qing-song ZHANG,Yi-tao LIAO. Design and experiment of wide folding rape windrower based on crawler type power chassis [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3740-3754.
[11] Wei-jun WU,Jiang-bo WU,Jia-le ZHANG,Qiang ZHOU,Qiao-hong YANG,Xun-peng QIN. Stability analysis and scale synthesis of new multifunctional aerial work platform [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3450-3459.
[12] Lei WANG,Xiao-peng LIU,Song ZHOU,Jin-lan AN,Hong-jie ZHANG,Jia-hui CONG. Effect of ultrasonic rolling on fatigue crack propagation behavior of 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3486-3495.
[13] Huan-lin ZHOU,Xin GUO,Xuan WANG,Li-xue FANG,Kai LONG. Topology optimization design of multiphase porous structures considering geometric nonlinearity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2754-2763.
[14] Lin-rong SHI,Wu-yun ZHAO. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2706-2717.
[15] Bo-sen CHAI,Guang-yi WANG,Dong YAN,Guo-ren ZHU,Jin ZHANG,Heng-sheng LYU. Numerical simulation of cavitation in torque converter and analysis of its influence on performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2236-2244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GAO Shu-Na, DENG Zhao-Xiang, HU Yu-Mei. Optimization of car interior low frequency noise based on sensitivity analysis[J]. 吉林大学学报(工学版), 2009, 39(05): 1130 -1136 .
[2] TIAN Cheng-wei,ZONG Chang-fu,WANG Xiang,JIANG Guo-bin,HE Lei. Sensor fault tolerance control method for steer-by-wire car[J]. 吉林大学学报(工学版), 2010, 40(01): 6 -0012 .
[3] ZHAO Shou-jing,HOU Chun-xi,XU Li-xin,LIANG Yan-long,QIAN Yan-chun,SUN Yao. Effects of suppressing oleanane-type ginsenoside biosynthesis on dammarane-type ginsenoside production[J]. 吉林大学学报(工学版), 2011, 41(03): 865 -868 .
[4] Lu Shao-fang, Liu Da-wei, Chen Bing-cong. Multicamera calibration used in distributed vision composite navigation of autonomous mobile robot[J]. 吉林大学学报(工学版), 2006, 36(03): 387 -0392 .
[5] WANG Zhong-Xin, RONG Liang-Liang, LIN Jun. Spike noise elimination from surface nuclear magnetic resonance signal for underground water[J]. 吉林大学学报(工学版), 2009, 39(05): 1282 -1287 .
[6] SHANG Xin-Lei, LIN Jun, TIAN Yu-Juan, WANG Ying-Ji. Relay smooth switching technique and application in magnetic resonance sounding system[J]. 吉林大学学报(工学版), 2011, 41(02): 398 -0402 .
[7] XING Xiao-xue, LIU Fu, MA Dong-mei, ZHAI Wei-wei, WANG Fang-rong. Intelligent counting system of soft fibrils collection based on machine vision[J]. , 2012, 42(05): 1267 -1272 .
[8] JING Ming, DENG Wei, JI Yan-jie, WANG Hao. Influences of time step and cell size on cellular automaton model[J]. 吉林大学学报(工学版), 2013, 43(02): 310 -316 .
[9] KONG Ling-fu, LI Hai-tao. Elderly behavior analysis based on immune unsupervised classification[J]. 吉林大学学报(工学版), 2011, 41(6): 1699 -1703 .
[10] PENG Yong, SUN Li-jun. Numerical simulation of effect of horizontal aggregate distribution in asphalt mixtures on splitting test[J]. 吉林大学学报(工学版), 2013, 43(04): 891 -896 .