吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1163-1174.doi: 10.13229/j.cnki.jdxbgxb201604023

• Orginal Article • Previous Articles     Next Articles

Effect of geometry and material properties of brake disc on thermoelastic instability of sliding frictional system

XIA De-mao1, XI Ying1, HUA Bin-bin1, ZHOU Ya-hong1, ZUO Jian-yong2   

  1. 1.School of Mechanical Engineering, Tongji University, Shanghai 201804,China;
    2.Institute of Railway and Urban Mass Transit, Tongji University, Shanghai 201804, China
  • Received:2015-01-30 Online:2016-07-20 Published:2016-07-20

Abstract: First, a mathematical model related to the thermoelastic instability was established, and the critical speeds of two different types of distribution of hot spots were derived. Then the effects of the thickness of the brake pair and thermal-physical properties of the sliding layer on the stability of the sliding frictional systems were analyzed and compared. Results show that, the sliding frictional system is more vulnerable to have dissymmetrical mode of hot spots. The minimum critical speed, which denotes the threshold of thermoelastic instability of the sliding frictional system, can be enhanced by increasing the thickness of the frictional layer and decreasing thickness, thermal conductivity, thermal expansion coefficient and elastic modulus of the sliding layer. However, the specific heat of the sliding layer almost has no influence on the stability of the sliding frictional system.

Key words: mechanical design, growth rate of perturbation, thermoelastic instability, minimum critical speed, wave number, hot spot

CLC Number: 

  • TH117
[1] 孟德建, 张立军, 阮丞, 等. 摩擦引起的制动器热点问题综述[J]. 同济大学学报:自然科学版, 2014, 42(8):1203-1210.
Meng De-jian, Zhang Li-jun, Ruan Cheng, et al. Literature survey of friction-induced hot spots in brakes[J]. Journal of Tongji University(Natural Science), 2014, 42(8):1203-1210.
[2] Du S. Thermoelastic effects in automotive brakes[D]. Ann Arbor: University of Michigan, 1997.
[3] Al-Shabibi A M. Transient solution of a thermoelastic instability problem using a reduced order model[D]. Ann Arbor: University of Michigan, 2002.
[4] Davis C L, Krousgrill C M, Sadeghi F. Effect of temperature on thermoelastic instability in thin disks[J]. ASME J Tribol, 2002, 124(3): 429-437.
[5] Joachim-Ajao D, Barber J R. Effect of material properties in certain thermoelastic contact problems[J]. J Appl Mech-T,1998,65(4): 889-893.
[6] Liu Y, Jang Y H, Barber J R. Finite element implementation of an eigenfunction solution for the contact pressure variation due to wear[J]. Wear, 2014, 309(1): 134-138.
[7] Dow R A, Burton R A. Thermoelastic instability of sliding contact in the absence of wear[J]. Wear, 1972, 19(3): 315-328.
[8] Burton R A, Nerlikar V, Kilaparti S R. Thermoelastic instability in a seal-like configuration[J]. Wear, 1973, 24(2): 177-188.
[9] Dow T A. Thermoelastic effects in brakes[J]. Wear, 1980, 59(1): 213-221.
[10] Lee K, Barber J R. An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application[J]. ASME J Tribol, 1994, 116(3): 409-414.
[11] Byon C, Choo K, Kim S J. Experimental and analytical study on chip hot spot temperature[J]. Int J Heat Mass Transfer, 2011, 54(9): 2066-2072.
[12] Lee K. Frictionally-excited thermoelastic instability in automotive disk brakes[D]. Ann Arbor: University of Michigan, 1993.
[13] Lee K, Barber J R. Frictionally excited thermoelastic instability in automotive disk brakes[J]. ASME J Tribol, 1993, 115(4): 607-614.
[14] Du S, Zagrodzki P, Barber J R, et al. Finite element analysis of frictionally excited thermoelastic instability[J]. J Therm Stresses, 1997, 20(2): 185-201.
[15] Yi Y B, Barber J R, Zagrodzki P. Eigenvalue solution of thermoelastic instability problems using Fourier reduction[J]. Proc Roy Soc, 2000,456(2003):2799-2821.
[16] Lee K. Frictionally excited thermoelastic instability in automotive drum brakes[J]. ASME J Tribol, 2000, 122(4): 849-855.
[17] Ayala J R R, Lee K, Rahman M, et al. Effect of intermittent contact on the stability of thermoelastic sliding contact[J]. ASME J Tribol, 1996, 118(1): 102-108.
[18] Hartsock D L, Fash J W. Effect of pad/caliper stiffness, pad thickness, and pad length on thermoelastic instability in disk brakes[J]. ASME J Tribol, 2000, 122(3): 511-518.
[19] Geijselaers H J M, Koning A J E. Finite element analysis of thermoelastic instability with intermittent contact[J]. ASME J Tribol, 2000, 122(1): 42-46.
[20] Painer S, Dufrénoy P, Weichert D. An experimental investigation of hot spots in railway disc brakes[J]. Wear, 2004, 256(7): 764-773.
[21] Majcherczak D, Dufrénoy P, Berthier Y. Tribological, thermal and mechanical coupling aspects of the dry sliding contact[J]. Tribol Int, 2007, 40(5): 8340-8343.
[22] Kasem H, Brunel J F, Dufrénoy P, et al. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking[J]. Wear, 2011, 270(5): 355-364.
[23] Kumar M, Boidin X, Desplanques Y, et al. Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking[J]. Wear, 2011, 270(5): 371-381.
[24] Green A E, Zerna W. Theoretical Elasticity[M]. Oxford: Oxford University Press,1968.
[25] Yi Y B, Bendawi A. Effect of convective cooling on frictionally excited thermoelastic instability[J]. Wear, 2012, 296(1): 583-589.
[26] 夏德茂, 奚鹰, 华滨滨, 等. RZS盘式制动器制动倍率的研究(续)[J]. 中国机械工程, 2015, 26(16):2244-2248.
Xia De-mao,Xi Ying,Hua Bin-bin, et al. Study on braking rate of disc brake unit RZS(Continue)[J]. China Mechanical Engineering, 2015, 26(16):2244-2248.
[27] 夏德茂,奚鹰,朱文翔,等. 二维轴对称摩擦制动器瞬态热弹性失稳的研究[J]. 机械工程学报,2015,51(20):144-155.
Xia De-mao, Xi Ying, Zhu Wen-xiang, et al. Transient frictionally excited thermoelastic instability analysis of two dimensional axisymmetric friction brake[J]. Journal of Mechanical Engineering, 2015, 51(20): 144-155.
[28] 马彪,赵家昕,李和言,等. 离合器结构参数对其热弹性不稳定性的影响[J]. 吉林大学学报:工学版, 2014, 44(4):933-938.
Ma Biao, Zhao Jia-xin, Li He-yan, et al. Effect of clutches' structural parameters on thermoelastic instability[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 933-938.
[29] Decuzzi P, Demelio G. The effect of material properties on the thermoelastic stability of sliding systems[J]. Wear, 2002, 252(3): 311-321.
[1] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[2] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
[3] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[4] WANG Tao, SAN Xiao-gang, GAO Shi-jie, WANG Hui-xian, WANG Jing, NI Ying-xue. Dynamic characteristics of vertical shaft system of photoelectric turntable [J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[5] HE Ji-lin, CHEN Yi-long, WU Kang, ZHAO Yu-ming, WANG Zhi-jie, CHEN Zhi-wei. Energy flow analysis of crane hoisting system and experiment of potential energy recovery system [J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[6] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[7] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[8] YOSHINO Tatsuo, FAN Lu-lu, YAN Lei, XU Tao, LIN Ye, GUO Gui-kai. Multiobjective optimization design for dummy chest structure based on MBNWS algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[9] LIU Kun, LIU Yong, YAN Jian-chao, JI Shuo, SUN Zhen-yuan, XU Hong-wei. Dynamic analysis of sit-to-stand human motion based on in vitro-sensor detection [J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[10] LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[11] CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control [J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[12] LI Rui, ZHANG Lu-yang, LIU Lin, WU Yue-yuan, CHEN Shi-wei. Magneto-rheological vibration isolation for three-span bridge based on similarity theory [J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[13] CHEN Zhong-min, HOU Li, DUAN Yang, ZHANG Qi, YANG Zhong-xue, JIANG Yi-qiang. Vibration analysis of a new pin-cycloid speed reducer [J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[14] LIU Nian, XU Tao, XU Tian-shuang, HU Xian-lei, LIU Wei-hai. Lightweight design of TRB dashboard cross beam [J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
[15] LI Jia-qi, NI Ji-min, GAO Xu-nan, SHI Xiu-yong, XU Xiao-chuan. Analysis of lubrication performance of floating ring bearing considering radial temperature gradient [J]. 吉林大学学报(工学版), 2017, 47(6): 1782-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .