吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1163-1174.doi: 10.13229/j.cnki.jdxbgxb201604023
• Orginal Article • Previous Articles Next Articles
XIA De-mao1, XI Ying1, HUA Bin-bin1, ZHOU Ya-hong1, ZUO Jian-yong2
CLC Number:
[1] 孟德建, 张立军, 阮丞, 等. 摩擦引起的制动器热点问题综述[J]. 同济大学学报:自然科学版, 2014, 42(8):1203-1210. Meng De-jian, Zhang Li-jun, Ruan Cheng, et al. Literature survey of friction-induced hot spots in brakes[J]. Journal of Tongji University(Natural Science), 2014, 42(8):1203-1210. [2] Du S. Thermoelastic effects in automotive brakes[D]. Ann Arbor: University of Michigan, 1997. [3] Al-Shabibi A M. Transient solution of a thermoelastic instability problem using a reduced order model[D]. Ann Arbor: University of Michigan, 2002. [4] Davis C L, Krousgrill C M, Sadeghi F. Effect of temperature on thermoelastic instability in thin disks[J]. ASME J Tribol, 2002, 124(3): 429-437. [5] Joachim-Ajao D, Barber J R. Effect of material properties in certain thermoelastic contact problems[J]. J Appl Mech-T,1998,65(4): 889-893. [6] Liu Y, Jang Y H, Barber J R. Finite element implementation of an eigenfunction solution for the contact pressure variation due to wear[J]. Wear, 2014, 309(1): 134-138. [7] Dow R A, Burton R A. Thermoelastic instability of sliding contact in the absence of wear[J]. Wear, 1972, 19(3): 315-328. [8] Burton R A, Nerlikar V, Kilaparti S R. Thermoelastic instability in a seal-like configuration[J]. Wear, 1973, 24(2): 177-188. [9] Dow T A. Thermoelastic effects in brakes[J]. Wear, 1980, 59(1): 213-221. [10] Lee K, Barber J R. An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application[J]. ASME J Tribol, 1994, 116(3): 409-414. [11] Byon C, Choo K, Kim S J. Experimental and analytical study on chip hot spot temperature[J]. Int J Heat Mass Transfer, 2011, 54(9): 2066-2072. [12] Lee K. Frictionally-excited thermoelastic instability in automotive disk brakes[D]. Ann Arbor: University of Michigan, 1993. [13] Lee K, Barber J R. Frictionally excited thermoelastic instability in automotive disk brakes[J]. ASME J Tribol, 1993, 115(4): 607-614. [14] Du S, Zagrodzki P, Barber J R, et al. Finite element analysis of frictionally excited thermoelastic instability[J]. J Therm Stresses, 1997, 20(2): 185-201. [15] Yi Y B, Barber J R, Zagrodzki P. Eigenvalue solution of thermoelastic instability problems using Fourier reduction[J]. Proc Roy Soc, 2000,456(2003):2799-2821. [16] Lee K. Frictionally excited thermoelastic instability in automotive drum brakes[J]. ASME J Tribol, 2000, 122(4): 849-855. [17] Ayala J R R, Lee K, Rahman M, et al. Effect of intermittent contact on the stability of thermoelastic sliding contact[J]. ASME J Tribol, 1996, 118(1): 102-108. [18] Hartsock D L, Fash J W. Effect of pad/caliper stiffness, pad thickness, and pad length on thermoelastic instability in disk brakes[J]. ASME J Tribol, 2000, 122(3): 511-518. [19] Geijselaers H J M, Koning A J E. Finite element analysis of thermoelastic instability with intermittent contact[J]. ASME J Tribol, 2000, 122(1): 42-46. [20] Painer S, Dufrénoy P, Weichert D. An experimental investigation of hot spots in railway disc brakes[J]. Wear, 2004, 256(7): 764-773. [21] Majcherczak D, Dufrénoy P, Berthier Y. Tribological, thermal and mechanical coupling aspects of the dry sliding contact[J]. Tribol Int, 2007, 40(5): 8340-8343. [22] Kasem H, Brunel J F, Dufrénoy P, et al. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking[J]. Wear, 2011, 270(5): 355-364. [23] Kumar M, Boidin X, Desplanques Y, et al. Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking[J]. Wear, 2011, 270(5): 371-381. [24] Green A E, Zerna W. Theoretical Elasticity[M]. Oxford: Oxford University Press,1968. [25] Yi Y B, Bendawi A. Effect of convective cooling on frictionally excited thermoelastic instability[J]. Wear, 2012, 296(1): 583-589. [26] 夏德茂, 奚鹰, 华滨滨, 等. RZS盘式制动器制动倍率的研究(续)[J]. 中国机械工程, 2015, 26(16):2244-2248. Xia De-mao,Xi Ying,Hua Bin-bin, et al. Study on braking rate of disc brake unit RZS(Continue)[J]. China Mechanical Engineering, 2015, 26(16):2244-2248. [27] 夏德茂,奚鹰,朱文翔,等. 二维轴对称摩擦制动器瞬态热弹性失稳的研究[J]. 机械工程学报,2015,51(20):144-155. Xia De-mao, Xi Ying, Zhu Wen-xiang, et al. Transient frictionally excited thermoelastic instability analysis of two dimensional axisymmetric friction brake[J]. Journal of Mechanical Engineering, 2015, 51(20): 144-155. [28] 马彪,赵家昕,李和言,等. 离合器结构参数对其热弹性不稳定性的影响[J]. 吉林大学学报:工学版, 2014, 44(4):933-938. Ma Biao, Zhao Jia-xin, Li He-yan, et al. Effect of clutches' structural parameters on thermoelastic instability[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 933-938. [29] Decuzzi P, Demelio G. The effect of material properties on the thermoelastic stability of sliding systems[J]. Wear, 2002, 252(3): 311-321. |
[1] | BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776. |
[2] | ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786. |
[3] | LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507. |
[4] | WANG Tao, SAN Xiao-gang, GAO Shi-jie, WANG Hui-xian, WANG Jing, NI Ying-xue. Dynamic characteristics of vertical shaft system of photoelectric turntable [J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105. |
[5] | HE Ji-lin, CHEN Yi-long, WU Kang, ZHAO Yu-ming, WANG Zhi-jie, CHEN Zhi-wei. Energy flow analysis of crane hoisting system and experiment of potential energy recovery system [J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113. |
[6] | XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123. |
[7] | SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132. |
[8] | YOSHINO Tatsuo, FAN Lu-lu, YAN Lei, XU Tao, LIN Ye, GUO Gui-kai. Multiobjective optimization design for dummy chest structure based on MBNWS algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139. |
[9] | LIU Kun, LIU Yong, YAN Jian-chao, JI Shuo, SUN Zhen-yuan, XU Hong-wei. Dynamic analysis of sit-to-stand human motion based on in vitro-sensor detection [J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146. |
[10] | LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780. |
[11] | CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control [J]. 吉林大学学报(工学版), 2018, 48(3): 781-786. |
[12] | LI Rui, ZHANG Lu-yang, LIU Lin, WU Yue-yuan, CHEN Shi-wei. Magneto-rheological vibration isolation for three-span bridge based on similarity theory [J]. 吉林大学学报(工学版), 2018, 48(3): 787-795. |
[13] | CHEN Zhong-min, HOU Li, DUAN Yang, ZHANG Qi, YANG Zhong-xue, JIANG Yi-qiang. Vibration analysis of a new pin-cycloid speed reducer [J]. 吉林大学学报(工学版), 2018, 48(1): 174-185. |
[14] | LIU Nian, XU Tao, XU Tian-shuang, HU Xian-lei, LIU Wei-hai. Lightweight design of TRB dashboard cross beam [J]. 吉林大学学报(工学版), 2018, 48(1): 199-204. |
[15] | LI Jia-qi, NI Ji-min, GAO Xu-nan, SHI Xiu-yong, XU Xiao-chuan. Analysis of lubrication performance of floating ring bearing considering radial temperature gradient [J]. 吉林大学学报(工学版), 2017, 47(6): 1782-1790. |
|