Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 998-1006.doi: 10.13229/j.cnki.jdxbgxb.20210797

Previous Articles     Next Articles

Structural parameters optimization of louver fins of air⁃cooled charge air cooler

Sheng LI1(),Jia ZHU2,De-hui HUANG1,Cun-fu CHEN1,Hong-qing FEI1,Wei FENG1,Xing-jun HU2()   

  1. 1.China FAW Jiefang Automotive Co. ,Ltd. (Qingdao),Qingdao 266043,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-08-18 Online:2023-04-01 Published:2023-04-20
  • Contact: Xing-jun HU E-mail:18863900@163.com;hxj@jlu.edu.cn

Abstract:

Based on the central composite design, the three geometric parameters of the air-cooled intercooler shutter fins, the opening angle, the fin spacing, and the louver spacing, are tested with three factors and five levels. Then a complete second-order regression model with the heat transfer characteristics Nu and the flow resistance characteristics f as the objective function is established, and the response surface analysis is carried out to analyze the importance of the influence of each structural parameter, and finally the optimization calculation is carried out according to the multi-objective genetic algorithm. The results show that the heat transfer characteristics are mainly affected by the fin spacing, while the resistance characteristics are most affected by the opening angle. Multi-objective optimization can obtain a set of Pareto solutions, which can be selected by the decision maker according to actual needs.

Key words: mechanical engineering, air-cooled charge air cooler, louver fin, central composite design, response surface method

CLC Number: 

  • U461.8

Fig.1

Geometry of louver fin"

Fig.2

Computational domain"

Fig.3

Computational domain grid"

Table 1

Grid number independence test"

序号网格数量h/[W·m-2·K-1ΔP/Pa偏差h/%偏差ΔP/%
121 346 758152.3477.62.40.5
232 298 984149.1475.90.30.1
343 585 629148.7475.4--

Fig.4

Test facility"

Fig.5

Comparison of experimental results and simulation results"

Table 2

Value scheme of three factors and five levels"

序号因子取值水平
-α-101+α
1开窗角度φ/(°)1012.51517.520
2翅片间距PLF /mm22.252.52.753
3百叶间距LP /mm2.52.7533.253.5

Table 3

Experimental and numerical simulation results"

序号φPLFLPNuf
1-α008.2960.176
2-11-18.9360.177
3-1-1-18.5430.213
4-1-118.2370.285
5-1119.3960.224
60008.8430.279
70008.8340.280
80008.8360.280
90008.8280.280
100008.9500.279
110008.8360.280
120+α09.9980.225
130-α07.7360.389
1400+α9.1380.376
1500-α8.6710.204
161-118.4730.497
171-1-18.1700.352
181119.8780.371
1911-19.4320.264
20+α008.9740.459

Table 4

Analysis of variance in Nu regression model oflouver fin"

来源自由度Adj SSAdj MSFP
合计195.783 52
模型75.672 020.810 2987.210.000
线性35.291 011.763 67189.810.000
φ10.301 530.301 5332.450.000
PLF14.778 104.778 10514.240.000
LP10.211 380.211 3822.750.000
平方项10.078 110.078 118.410.013
φ*φ10.078 110.078 118.410.013
交互项30.302 900.100 9710.870.001
φ*PLF10.155 270.155 2716.710.002
φ*LP10.044 380.044 384.780.049
PLF*LP10.103 250.103 2511.110.006
误差120.111 500.009 29
失拟80.100 900.012 614.760.074
纯误差40.010 590.002 65

Table 5

Analysis of variance in f regression model of louver fin"

来源自由度Adj SSAdj MSFP
合 计190.147 184
模型90.147 0780.016 3421536.690.000
线性30.139 8840.046 6284384.560.000
φ10.082 5300.082 5307760.540.000
PLF10.025 4350.025 4352391.740.000
LP10.031 9190.031 9193001.410.000
平方项30.002 7940.000 93187.590.000
φ*φ10.002 2090.002 209207.680.000
PLF*PLF10.001 1320.001 132106.420.000
LP*LP10.000 1550.000 15514.580.003
交互项30.004 4000.001 467137.910.000
φ*PLF10.001 7170.001 717161.410.000
φ*LP10.002 1970.002 197206.550.000
PLF*LP10.000 4870.000 48745.770.000
误差100.000 1060.000 011
失拟60.000 1050.000 01741.730.001
纯误差40.000 0020.000 000

Fig.6

Response surface analysis of Nu of louver fin"

Fig.7

Response surface analysis of f of louver fin"

Fig.8

Pareto front"

1 沙拉·塞库利克.换热器设计技术[M].程林,译.北京:机械工业出版社, 2010.
2 钱颂文.换热器设计手册[M].北京:化学工业出版社, 2003.
3 Ferrero M, Scattina A, Chiavazzo E, et al. Louver finned heat exchangers for automotive sector: numerical simulations of heat transfer and flow resistance coping with industrial constraints[J]. Journal of Heat Transfer, 2013, 135(12):1-12.
4 Kwon Young Chul, Chang Keun Sun. Heat transfer and friction characteristics of louver fin and tube heat exchangers under wet conditions[J]. Applied Chemistry for Engineering, 2008, 19(1): 73-79.
5 Javaherdeh K, Vaisi A, Moosavi R. The effects of fin height, fin-tube contact thickness and louver length on the performance of a compact fin-and-tube heat exchanger[J]. International Journal of Heat and Technology, 2018, 36(3): 825-834.
6 王任远, 李建雄, 吴金星. 散热器空气侧百叶窗翅片结构参数优化[J]. 流体机械, 2013, 41(6): 74-78.
Wang Ren-yuan, Li Jian-xiong, Wu Jin-xing. Structure parameters optimized for louvered fin in air side of radiator[J]. Fluid Machinery, 2013, 41(6): 74-78.
7 Taylor J R. 误差分析导论-物理测量中的不确定度[M]. 王中宇,译. 北京: 高等教育出版社, 2015: 43-105.
8 胡兴军,张靖龙,辛俐,等. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报: 工学版, 2021, 51(5): 1557-1564.
Hu Xing-jun, Zhang Jing-long, Xin Li, et al. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air-cooled charge air cooler[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1557-1564.
9 胡兴军, 张靖龙, 罗雨霏, 等. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报: 工学版, 2021, 51(6): 1933-1942.
Hu Xing-jun, Zhang Jing-long, Luo Yu-fei, et al. Influence investigation of cooling tube structure and airflow direction on the thermal-hydraulic performance of air-cooled charge air cooler[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 1933-1942.
10 Han H Z, Li B X, Shao W. Multi-objective optimization of outward convex corrugated tubes using response surface methodology[J]. Applied Thermal Engineering, 2014, 70 (1): 250-262.
11 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 23(1): 87-91.
Zhang Zhi-hong, He Zhen, Guo Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 23(1): 87-91.
12 Qian Zuo-qin, Wang Qiang, Cheng Jun-lin, et al. Simulation investigation on inlet velocity profile and configuration parameters of louver fin[J]. Applied Thermal Engineering, 2018, 138: 173-182.
13 王维. 外胀式螺旋波纹管强化传热机理及换热器优化研究[D]. 哈尔滨:哈尔滨工业大学能源科学与工程学院, 2019.
Wang Wei. Study on the heat transfer mechanism and heat exchanger optimization of outward helically corrugated tube[D]. Harbin: School of Energy Science and Engineering, Harbin Institute of Technology, 2019.
14 Kamel M S, Mojtaba M, Soroush M, et al. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology[J]. Powder Technology, 2017, 313: 99-111.
15 Liu Y W, Liu L, Liang L L, et al. Thermodynamic optimization of the recuperative heat exchanger for Joule-Thomson cryocoolers using response surface methodology[J]. International Journal of Refrigeration, 2015, 60: 155-165.
16 Han H Z, Yu R T, Li B X, et al. Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II[J]. International Journal of Heat and Mass Transfer, 2019, 131: 781-794.
17 Whitley D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85.
18 陈凯,汪双凤. 基于遗传算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(2): 384-388.
Chen Kai, Wang Shuang-feng. Optimization of air-cooled battery thermal management system based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(2): 384-388.
19 Hemmat E M, Hajmohammad H, Moradi R, et al. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method[J]. Applied Thermal Engineering, 2017, 112: 1648-1657.
20 易凯. “三条红线”约束下的钦州市水资源优化配置研究[D]. 南宁:广西大学土木建筑工程学院, 2017.
Yi Kai. The research on water resources optimal allocation of qinzhou city under constraint of three red lines[D]. Nanning: College of Civil and Architectural Engineering, Guangxi University, 2017.
21 孙靖明,梁迎春. 机械优化设计[M]. 北京:机械工业出版社, 2012.
[1] Jian WANG,Wei YU,Bin WANG. Effects of methanol substitution percent on combustion and emission of diesel engines under plateau condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 954-963.
[2] Li-juan YU,Yang AN,Jia-long HE,Guo-fa LI,Sheng-xu WANG. Research progress and development trend of extrapolation method in electromechanical equipment load spectrum [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 941-953.
[3] Zhen SONG,Jie LIU. Time series prediction algorithm of vibration frequency of rotating machinery [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1764-1769.
[4] Ling ZHU,Qiu-cheng WANG. New energy vehicle drive system coordinated control method under spatial geometric constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1509-1514.
[5] Zhao-hui JIN,Le-qi GU,Wei HONG,Fang-xi XIE,Tian YOU. Analysis on pressure fluctuation of hydraulic variable valve actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 773-780.
[6] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
[7] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[8] Zi-ling ZHANG,Xiong HU,Yin QI,Wei WANG,Zhi-qiang TAO,Zhi-feng LIU. An approach for error allocation of machine tool based on vector projection response surface method [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 384-391.
[9] Lei WANG,Bing-han HUANG,Jia-hui CONG,Li HUI,Song ZHOU,Yong-zhen XU. Effect of ultrasonic impact on fatigue performance of friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2542-2548.
[10] Xing-jun HU,Jing-long ZHANG,Yu-fei LUO,Li XIN,Sheng LI,Jin-rui HU,Wei LAN. Influence investigation of cooling tube structure and airflow direction on thermal⁃hydraulic performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1933-1942.
[11] Xing-jun HU,Jing-long ZHANG,Li XIN,Yu-fei LUO,Jing-yu WANG,Tian-ming YU. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1557-1564.
[12] Yong-ying TAN,Shan-zhen YI,Da-bing XUE,Xiao-ming WANG,Lei YUAN. Weight adaptive control for trotting gait of load-carrying quadruped walking vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1506-1517.
[13] Gang WANG,Hui-li LIU,Hong-lei JIA,Chun-jiang GUO,Yong-jian CONG,Ming-hao QU. Design and experiment of touching-positioning weeding device for inter-row maize (Zea Mays L.) [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1518-1527.
[14] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[15] Fu-gang ZHAI,Yan-bin YIN,Chao LI,Wei TIAN,Zi-shi QIAO. Stiffness modeling and feedforward control of servo electric cylinder drive system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 442-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!