Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 554-565.doi: 10.13229/j.cnki.jdxbgxb.20230387

Previous Articles    

Analysis of influence of built environment of spatial units of different housing types on commuting mode choice

Jiao-rong WU1,2(),Xu-dong LIU1   

  1. 1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China
    2.Urban Mobility Institute,Tongji University,Shanghai 201804,China
  • Received:2023-04-19 Online:2025-02-01 Published:2025-04-16

Abstract:

In order to explore the impact of built environment on residents' commuting mode choice under the mixed distribution of different planning unit groups, a mixed logit model considering the heterogeneity of housing type spatial units was constructed. At the same time, the impact of built environment characteristics at both individual and planning spatial unit levels on commuting behavior was considered. An empirical study was conducted using sample data from a survey of residents' transportation behavior and willingness in Shenzhen. The results show that the mixed logit model has better goodness of fit than the multinomial logit model. If the differences in housing spatial unit groups are ignored, the degree of influence of land use mix on mixed housing spatial units will be underestimated by 18.5%. The degree of influence of rail transit stations on affordable housing, small property rights housing and resettlement indicator housing spatial units will be overestimated by 6.3%, 5.4% and 4.5%, respectively, while the influence of bus stop density on resettlement indicator housing spatial units will be underestimated by 4.8%. Public service facilities have the greatest empirical sensitivity to commercial housing (3.2%) and small property rights housing spatial units (2.8%), while bus stop density has the greatest empirical sensitivity to affordable housing (2.6%) and resettlement indicator housing (2.0%), and distance to the nearest rail transit station has the greatest empirical sensitivity to small property rights housing spatial units (2.1%). Therefore, it is necessary to combine the impact and sensitivity differences of different housing spatial units' built environment, and accurately guide residents' green commuting through improving high-efficiency housing spatial units' built environment.

Key words: engineering of communications and transportation system, built environment, commuting mode choice, housing space units, mixed Logit model

CLC Number: 

  • U491

Table 1

Variable description"

变量类别变量变量符号变量描述
方案变量经济成本Cost出行的固定经济成本和使用经济成本
出行时间Time出行耗时

社会经济

属性变量

性别Gender1=男;0=女
年龄Age1=30岁以上;2=30岁及以下
学历Edu1=初中及以下学历(参考变量);2=高中和中专;3=大专;4=本科及以上
户收入Income1=收入大于等于25万元/年;0=收入小于25万元/年
家庭拥车数Car家庭拥车数量

建成环

境变量

人口密度Pop空间单元人口密度/(万人·km-2
公共服务设施密度POI空间单元餐饮、住宿、购物、生活服务、运动场馆、医疗设施POI密度/(百个·km-2
土地混合度Landmix空间单元的土地利用混合度(0~1)
道路网密度R_density空间单元路网密度/(km·km-2
到市中心距离D_center到深圳市民中心的路网距离/km
到最近公交站距离D_bus住房空间单元内居民的住址到最近公交站的路网距离/km
公交站点密度Bus_density空间单元公交站点密度/(个·km-2
到最近地铁站距离D_subway住房空间单元内居民的住址到最近地铁站的路网距离/km

Table 2

Housing space units definition"

住房空间单元定义比例/%
市场商品房空间单元市场商品房指经政府有关部门批准后,房地产公司开发经营,建成后用于市场出售或出租的房屋。标准规划单元市场商品房比例超过60%,定义为市场商品房空间单元29.1
保障性住房空间单元政府为中低收入住房困难家庭所提供的限定标准、限定价格或租金的住房。标准规划单元保障性住房比例超过60%,定义为保障性住房空间单元1.8
小产权房空间单元小产权房是指在农村集体土地上建设的房屋,未办理相关证件,未缴纳土地出让金等费用,其产权证由乡政府或村颁发。标准规划单元小产权房比例超过60%,定义为小产权房空间单元31.6
回迁指标房空间单元尚未与开发商签署回迁协议的待迁房屋,购买后经村股份公司直接与开发商签约,可避税且不受限购令、限售令影响。标准规划单元回迁指标房比例超过60%,定义为回迁指标房空间单元7.6
混合住房空间单元标准规划单元任意住房类型比例未超过60%,视作混合住房空间单元29.7

Fig.1

Housing space unit distribution"

Fig.2

Commuting trip structure of different housing space units"

Table 3

Parameter estimates of spatial unit models for different housing types"

变量(参考分类:私人小汽车)全空间单元市场商品房空间单元保障性住房空间单元小产权房空间单元回迁指标房空间单元混合住房空间单元

方案

变量

小汽车时间-0.199**-0.178**-0.168*-0.192**-0.171*-0.214**
公交时间-0.038**-0.040*-0.060*-0.035*-0.088**-0.035**
步行时间-0.187**-0.209**-0.201**-0.179**-0.234**-0.179**
参数分布标准差0.0870.0970.0940.0800.1040.079
电动自行车时间-0.242**-0.288**-0.383**-0.249**-0.280**-0.221**
参数分布标准差0.1090.1230.1740.1130.1210.093
费用-0.081**-0.071**-0.092**-0.076**-0.112**-0.086**
参数分布标准差0.0430.0330.0560.0390.0610.045

公共

交通

性别-1.888**-1.776**-1.509**-2.034**-1.799**-1.682**
年龄-1.102**-1.101**-0.743**-1.417**-1.261**-1.013**
学历(参考变量:初中及以下)
高中和中专-0.726**-0.662*----
大专-0.859**-1.101**----
本科及以上-0.909**-1.091**----
户收入25万元/年以上-0.696**-0.790*---0.667*-
家庭车辆数-1.170**-1.490**-0.753*-1.121**-1.127*-1.117**
到深圳市民中心的距离/km-0.033**-0.019**-0.133**-0.049*-0.088**-0.029**
到最近轨道站点的距离/km-0.086**-0.091**-0.151*-0.141**-0.132*-0.060*
空间单元人口密度/(万人·km-20.188**0.255*0.339*0.261**0.226*0.153**
公共服务设施密度/(百个·km-2------
到最近公交站点的路网距离/km-0.084*-0.081*-0.139*-0.115*-0.101*-0.078*
公交站点密度/(个·km-20.022*0.012*0.024*0.034*0.069*0.064**
路网密度/(km·km-2------
土地利用混合度------
常数3.810**4.839**3.843**2.896**8.199**2.434**

Fig.3

Distribution of random parameters related to the built environment in mixed logit model"

Fig.4

Empirical sensitivity of key variables"

Fig. 5

Built environment construction high benefit space units"

1 Handy S L, Boarent M G, Ewing R, et al. How the built environment affects physical activity: views from urban planning[J]. American Journal of Preventive Medicine, 2002, 23(2): 004750.
2 Reid E, Robert C. Travel and the built environment[J]. Journal of the American Planning Association, 2010, 76(3): 265-294.
3 张延吉,胡思聪,陈小辉,等. 城市建成环境对居民通勤方式的影响——基于福州市的经验研究[J]. 城市发展研究, 2019, 26(3): 72-78.
Zhang Yan-ji, Hu Si-cong, Chen Xiao-hui, et al. The impact of urban built environment on residential choice of commuting mode: based on empirical research in Fuzhou[J]. Urban Development Studies, 2019, 26(3): 72-78.
4 尹超英,邵春福,王晓全. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报: 工学版, 2019, 49(3): 714-719.
Yin Chao-ying, Shao Chun-fu, Wang Xiao-quan. Influence of urban built environment on car commuting considering parking availability[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 714-719.
5 黄勇,赵航,许旺土,等. 建成环境与高收入群体出行模式关系研究[J]. 公路交通科技, 2022, 39(1): 106-113.
Huang Yong, Zhao Hang, Xu Wang-tu, et al. Study on relationship between built environment and high income group travel mode[J]. Journal of Highway and Transportation Research and Development, 2022, 39(1): 106-113.
6 Yin C Y, Shao C F, Wang X Q. Exploring the impact of built environment on car use: does living near urban rail transit matter? [J]. Transportation Letters, 2020, 12(6): 391-398.
7 Chen F A, Wu J R, Chen X H, et al. Disentangling the impacts of the built environment and residential self-selection on travel behavior: an empirical study in the context of diversified housing types[J]. Cities, 2021, 116: 103285.
8 仝照民,安睿,刘耀林. 建成环境对居民通勤方式选择的影响——以武汉市城中村为例[J]. 地理科学进展, 2021, 40(12): 2048-2060.
Tong Zhao-min, An Rui, Liu Yao-lin. Impact of the built environment on residents' commuting mode choices: a case study of urban village in Wuhan City[J]. Progress in Geography, 2021, 40(12): 2048-2060.
9 王婷婷. 我国城镇居民住房财富分化的程度、特征及其影响研究[D]. 上海: 上海师范大学商学院, 2014.
Wang Ting-ting. Research on the degree, characteristics and impact of housing wealth differentiation of Chinese urban residents[D]. Shanghai: School of Finance and Business, Shanghai Normal University, 2014.
10 Liu C, Sun Y, Yuan C, et al. The effect of residential housing policy on car ownership and trip chaining behaviour in Hangzhou, China[J]. Transportation Research Part D, 2018, 62: 125-138.
11 尹超英,陆颖,邵春福,等. 考虑空间自相关的建成环境对通勤方式选择的影响[J]. 吉林大学学报: 工学版, 2023, 53(7): 1994-2000.
Yin Chao-ying, Lu Ying, Shao Chun-fu, et al. Impacts of built environment on commuting mode choice considering spatial autocorrelation[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7): 1994-2000.
12 柳文燕. 基于不同收入群体的城市居民出行行为分析[D]. 兰州: 兰州交通大学交通运输学院, 2020.
Liu Wen-yan. Analysis of travel behavior of urban residents based on different income groups[D]. Lanzhou: School of Transportation, Lanzhou Jiaotong University, 2020.
13 黄梓卫. 深圳市国土空间规划标准单元制度研究[J]. 城市学刊, 2021, 42(6): 40-45.
Huang Zi-wei. Study on standard unit system of spatial planning of national land in Shenzhen City[J]. Journal of Urban Studies, 2021, 42(6): 40-45.
14 张娜. 深圳南山区居住小区建成环境对居民出行行为影响研究[D]. 哈尔滨: 哈尔滨工业大学建筑学院, 2014.
Zhang Na. Effects of residential quarters built environment on residents travel behavior in Nanshan District, Shenzhen[D]. Harbin: School of Architecture, Harbin Institute of Technology, 2014.
15 黄毅熠,吝涛,胡灯进,等. 小尺度海域空间评价单元划分技术研究——以福建省东山湾为例[J]. 生态学报, 2021, 41(2): 707-716.
Huang Yi-yi, Lin Tao, Hu Deng-jin, et al. The spatial division approach of evaluation units in fine-scale sea area: a case study of Dongshan Bay, Fujian Province[J]. Acta Ecologica Sinica, 2021, 41(2): 707-716.
16 王嘉玥. 基于Logit模型与经验敏感度的学生通勤方式选择行为研究[D]. 北京: 北京交通大学交通运输学院, 2019.
Wang Jia-yue. Study on students' commute mode choice behavior based on logit model and empirical sensitivity[D]. Beijing: School of Transportation, Beijing Jiaotong University, 2019.
[1] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[2] Yi-yong PAN,Yi-wen YOU,Jing-ting WU. Analysis of heterogeneity and transferability of factors influencing severity of lane change accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 520-528.
[3] Yao SUN,Bao-zhen YAO,Zi-jian BAI. Evaluate the validity of traffic congestion dispersion based on random forest method [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 512-519.
[4] Fa-cheng CHEN,Guang-quan LU,Qing-feng LIN,Hao-dong ZHANG,She-qiang MA,De-zhi LIU,Hui-jun SONG. Review of drivers' takeover behavior in conditional automated driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 419-433.
[5] Rong-han YAO,Wen-yan QI,Hong-yu HU,Xiao-jing DU,Yan-feng QIAO,Li-bing WANG. Multi-lane cellular automata model considering bus-high occupancy vehicle lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 162-174.
[6] De-lin LI,Jun-xian CHEN,Yong-gang WANG,Lu WANG,Zhao-qing SHEN. Identification of driving behavior on steep sharp curves based on latent class model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3526-3533.
[7] Yi-yong PAN,Jing-ting WU,Xuan-ye Miao. Temporal instability analysis of factors affecting injury severities of elderly drivers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2819-2826.
[8] Hui-ying WEN,Zi-qi HE,Qiu-ling LI,Sheng ZHAO. Traffic conflict prediction and influencing factors analysis of truck lane change on expressway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2827-2836.
[9] Jin XU,Zheng-huan CHEN,Qi-shuo LIAO,Zhan-ji ZHENG,He-shan ZHANG. Mental workload of drivers at high-density interchanges of freeways based on ECG data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2807-2818.
[10] Na ZHANG,Feng CHEN,Jian-po WANG,Ya-di ZHU. Recognition of travel patterns for urban rail transit passengers based on spatiotemporal sequence similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2588-2599.
[11] Chun-jiao DONG,Yu-xiao LU,She-qiang MA,Peng-hui LI. Identification of Ebike violation behaviors by considering waiting tolerance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2540-2546.
[12] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[13] Xi-zhen ZHOU,He GONG,Dun-dun LI,Yan-jie JI,Jie YAN. Nonlinear model for impact of built environment on curb parking spaces occupancy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2520-2530.
[14] Li-xin YAN,Tao ZENG,Yi HE,Jun-hua GUO,Xin-hui HU. Man-machine takeover behavior sequence coding and analysis of shared driving intelligent vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2547-2556.
[15] Rong-gui ZHOU,Pei GAO,Yu-xuan LI,Jian ZHOU. Abnormal driving behavior thresholds of highway minibuses based on trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2581-2587.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!