吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1287-1296.doi: 10.13229/j.cnki.jdxbgxb201604039

• Orginal Article • Previous Articles     Next Articles

Static gait planning method for quadruped robots on rough terrains

ZHANG Shuai-shuai1, RONG Xue-wen1, LI Yi-bin1, LI Bin2   

  1. 1.School of Control Science and Engineering, Shandong University, Ji'nan 250061, China;
    2.School of Science, Qilu University of Technology, Ji'nan 250353, China
  • Received:2014-12-11 Online:2016-07-20 Published:2016-07-20

Abstract: In order to improve the ability of quadruped robots to cross rough terrains, a static gait planning method is proposed. This method consists of three parts: the posture adjustment planning, the body trajectory planning and the foot trajectory planning. To improve the adaptability of the quadruped robot to the terrain through the posture adjustment, a method to calculate the pitching angle is proposed. The robot can obtain enough stability margin through a body sway motion, and the continuity of movement during the whole walking process can be guaranteed by using a quintic body trajectory. In addition, a box shape foot trajectory planning method is given to overcome the situation that the robot can not obtain the information of the terrain. Using the proposed static gait planning method, the robot can autonomously navigate through unknown irregular terrains with sufficient stability margin in real time.

Key words: automatic control technology, quadruped robot, static gait planning, body moving trajectory, foot trajectory

CLC Number: 

  • TP242.6
[1] Rong Xue-wen, Li Yi-bin, Ruan Jiu-hong,et al. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology,2012, 26(4): 1171-1177.
[2] McGhee Robert B, Frank Andrew A. On the stabil-ity properties of quadruped creeping gaits[J]. Mathematical Biosciences, 1968, 3: 331-351.
[3] Lee Tsu-tian, Shih Ching-long. A study of the gait control of a quadruped walking vehicle[J]. Robot-ics and Automation, 1986, 2(2): 61-69.
[4] Dimitris Pongas, Mistry Michael, Schaal Stefan. A robust quadruped walking gait for traversing rough terrain[C]∥Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007:1474-1479.
[5] Buchli Jonas,Kalakrishnan Mrinal, Mistry Michael, et al. Compliant quadruped locomotion over rough terrain[C]∥Proceedings of the IEEE International Conference on Intelligent Robots and Systems, St. Louis, USA, 2009:814-820.
[6] Kalakrishnan Mrinal, Buchli Jonas, Pastor Peter,et al. Fast, robust quadruped locomotion over challenging terrain[C]∥Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, 2010:2665-2670.
[7] Zico Kolter J, Rodgers Mike P, Ng Andrew Y. A control architecture for quadruped locomotion over rough terrain[C]∥Proceedings of the IEEE Inter-national Conference on Robotics and Automation, Pasadena, CA, USA, 2008: 811-818.
[8] 黄博,赵建文,孙立宁. 基于静平衡的四足机器人直行与楼梯爬越步态[J]. 机器人,2010,32(2):226-232.
Huang Bo,Zhao Jian-wen,Sun Li-ning. Straight walking and stair climbing gait of quadruped robot based on static balance[J]. Robot, 2010, 32(2): 226-232.
[9] 王鹏飞. 四足机器人稳定行走规划及控制技术研究[D]. 哈尔滨: 哈尔滨工业大学机电工程学院,2007.
Wang Peng-fei. Research on quadruped robot steadily walking planning and controlling technology[D]. Harbin: School of Mechanical and Electrical Engineering, Harbin Institute of Technology, 2007.
[10] 冯华山, 王润孝,赵国斌,等. 四足机器人坡面静步态平衡方法研究[J]. 机械科学与技术,2009,28(4):436-441.
Feng Hua-shan, Wang Run-xiao, Zhao Guo-bin,et al. A balance method for the static gait of a quadruped robot over a slope[J]. Mechanical Science and Tech-nology for Aerospace Engineering, 2009, 28(4): 436-441.
[11] 高杉. 四足机器人静态全方位步行的稳定性研究及实验仿真[D]. 青岛: 中国海洋大学工程学院,2008.
Gao Shan. The study of stability in omnidirectional static walking of a quadruped robot and the simulation[D]. Qingdao: College of Engineering, Ocean University of China,2008.
[12] de Santos P G, Garcia E, Estremera J. Quadru-pedal Locomotion: an Introduction to the Control of Four-legged Robots[M]. London: Springer, 2007:59-60.
[13] Shin-Min Song, Waldron Kenneth J. An analytical approach for gait study and its applications on wave gaits[J]. International Journal of Robotics Research, 1987, 6(2):60-71.
[14] Joaquin Estremera, de Santos Pablo Gonzalez. Generating continuous free crab gaits for quadruped robots on irregular terrain[J]. IEEE Transactions on Robotics, 2005, 21(6): 1067-1076.
[15] Messuri D, Klein Charles A. Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion[J]. IEEE Journal of Robotics and Automation, 1985, 1(3): 132-141.
[16] Havoutis Ioannis, Ortiz Jesus, Bazeille stéphane,et al. Onboard perception-based trotting and crawling with the hydraulic quadru-ped robot (HyQ)[C]∥Intelligent Robots and Systems (IROS), Tokyo Big Sight, Japan, 2013: 6052-6057.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[10] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[11] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[12] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[13] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[14] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .