吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 2127-2135.doi: 10.13229/j.cnki.jdxbgxb.20210988

• 通信与控制工程 • 上一篇    

电子节气门的连续非奇异终端滑模控制

王艳敏(),张伟琦,段广鑫,葛杨   

  1. 哈尔滨工业大学 电气工程及自动化学院,哈尔滨 150001
  • 收稿日期:2021-09-30 出版日期:2023-07-01 发布日期:2023-07-20
  • 作者简介:王艳敏(1979-),女,副教授,博士.研究方向:滑模控制,电机驱动控制.E-mail:wangyanmin@hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(51307035)

Continuous non-singular terminal sliding mode control of electronic throttle

Yan-min WANG(),Wei-qi ZHANG,Guang-xin DUAN,Yang GE   

  1. School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin 150001,China
  • Received:2021-09-30 Online:2023-07-01 Published:2023-07-20

摘要:

针对电子节气门的转角开度控制,为克服传统滑模控制存在的抖振问题及信号微分难以直接求取问题,提出一种新型的连续非奇异终端滑模控制方法。建立电子节气门系统的数学模型,从滑模面和控制律两方面改进节气门的控制性能,即在滑模面设计过程中,有目的地引入系统状态的幂指数项,以保证系统的全局有限时间收敛,并去除传统终端滑模对控制器参数选取的约束条件。在控制律设计过程中,引入低通滤波环节,在保证系统稳定性条件下,推导出其连续控制律,并解决了状态变量微分求取的问题。通过与传统一阶和二阶滑模的理论和仿真性能对比,证明本文方法在抖振抑制、响应速度、控制精度方面的优越性。

关键词: 控制工程, 电子节气门, 滑模控制, 稳定性, 控制奇异性

Abstract:

In order to solve the problems of the chattering and signal derivation for the traditional sliding mode control(SMC) approach, a novel continuous non-singular terminal sliding approach is proposed to realize the angle control of electronic throttles(ET). Based on the mathematical model of the ET system, its control performance is improved in the aspect of sliding surface and control law. During the design of the sliding surface, the finite-time convergence can be achieved by introducing the power index terms concerning the system states. Meanwhile, it removes the constraint condition of the controller parameter for the traditional SMC approach. During the design of the control law, a continuous control law can be achieved by introducing the low pass filtering in the premise of the system stability. Meanwhile, it solves the problem of signal derivation of system states. Comparative study and simulations with the traditional first-order SM and second-order SM proves the superiorities of the proposed approach in chattering elimination, fast response and control accuracy.

Key words: control engineering, electronic throttle, sliding mode control(SMC), stability, control singularity

中图分类号: 

  • TP273

图1

ET控制系统框图"

表1

ET系统的测量参数"

参数单位最小值最大值
θ0rad0.1130.113
kdN·m·s/rad0.8×10-43.7×10-4
kmN·m0.56×10-10.95×10-1
kkN·m0.97×10-40.43×10-3
keV·s/rad0.5×10-50.2×10-1
ksN·m /rad0.247×10-10.687×10-1
RΩ2.82.8
LH0.9×10-30.9×10-3
Jmkg·m20.5×10-41.6×10-4
Jthkg·m20.9×10-54.6×10-5
N-1818

图2

设计参数r11和r21的取值范围"

图3

设计参数r12和r22的取值范围"

表2

阶跃信号作用下的ET系统性能对比"

控制

策略

四次阶跃信号下

响应时间/s

转角开度稳态误差/(°)电压振荡最大幅值/V
1234
C?NTSM0.150.180.170.180.0030.8
1?SM0.230.320.350.320.0067.1
2?SM0.180.280.250.210.0181.8

图4

ET系统在阶跃信号作用下的控制性能对比"

表3

ET系统跟踪控制性能对比"

控制策略响应时间/s

转角开度稳态

误差/(°)

稳态电压振荡

最大幅值/V

C?NTSM0.190.0020.02
1?SM0.200.0111.10
2?SM0.250.0287.00

图5

三种方法控制下的ET系统跟踪性能对比"

1 Yang B, Liu M, Hakil K, et al. Luenberger-sliding mode observer based fuzzy double loop integral sliding mode controller for electronic throttle valve[J]. Journal of Process Control, 2018, 61: 36-46.
2 Ashok B, Kumar C R. Trends and future perspectives of electronic throttle control system in a spark ignition engine[J]. Annual Reviews in Control, 2018, 93(4): 1923-1931.
3 白锐, 王胜贤, 王贺彬. 汽车电子节气门的建模及滑模控制[J]. 控制工程, 2019, 26(7): 1384-1390.
Bai Rui, Wang Sheng-xian, Wang He-bin. Modeling and sliding-mode control for the automotive electronic throttle[J]. Control Engineering of China, 2019, 26(7): 1384-1390.
4 Xavier N, Bandyopadhyay B. Practical sliding mode using state depended intermittent control[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(1): 341-345.
5 Song J, Huang L, Karimi R, et al. ADP-based security decentralized sliding mode control for partially unknown large-scale systems under injection attacks[J]. IEEE Transactions on Circuits and Systems, 2020, 67(12): 5290-5301.
6 Wang H, Shi L, Man Z, et al. Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7160-7172.
7 Junejo A, Xu W, Mu C, et al. Adaptive speed control of PMSM drive system based a new sliding-mode reaching law[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12110-12121.
8 Shao K, Zheng J, Huang K, et al. Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6659-6668.
9 Abrazeh S, Mohseni S R, Gheisarnejad M. Non-singular terminal sliding mode control with ultra-local model and single input interval Type-2 fuzzy logic control for pitch control of wind turbines[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(3): 690-700.
10 Tuan A, Kang H. An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables[J]. IEEE Access, 2019, 7: 8701-8712.
11 Nguyen V C, Vo A T, Kang Hee-jun. A Non-singular fast terminal sliding mode control based on third-order sliding mode observer for a class of second-order uncertain nonlinear systems and its application to robot manipulators[J]. IEEE Access, 2016, 64(8): 78109-78120.
12 Ge Y, Wang Y, Ying Z. Observer-based non-singular terminal sliding mode control of boost converters[C]//The 39th Chinese Control Conference, Shenyang, China, 2020: 2096-2100.
13 Yang Y, Yan Y. Back stepping sliding mode control for uncertain strict-feedback nonlinear systems using neural network-based adaptive gain scheduling[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 580-586.
14 冯勇, 包晟, 余星火. 非奇异终端滑模控制系统的设计方法[J]. 控制与决策, 2002, 17(2): 194-198.
Feng Yong, Bao Sheng, Yu Xing-huo. Design method of non-singular terminal sliding mode control system[J]. Control and Decision, 2002, 17(2): 194-198.
15 Hu Y, Huang H, He S. Adaptive tracking control of an electronic throttle valve based on recursive terminal sliding mode[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 251-262.
16 Sun Z, Jiao X, Xue J. Prescribed performance control based on PSO identification and disturbance observer for automotive electronic throttle system with actuator constraint[J]. Control Engineering and Applied Informatics, 2020, 22(1): 24-31.
17 Bartolini G, Pisano A, Punta E, etal. A survey of applications of second order sliding mode control to mechanical systems[J]. International Journal of Control, 2003, 76(9): 875-892.
18 Markus R, Martin H. Application of higher order sliding-mode concepts to a throttle actuator for gasoline engines[J]. IEEE Transactions on Industrial Electronics, 2019, 56(9): 3322-3329.
19 Pavkovic D, Deur J, Jansz M. Self-tuning control of an electronic throttle[C]//IEEE Conference on Control Applications (CCC), Istanbul, Turkey, 2003: 149-154.
22 Jim M, Lee J, Ahn K K. Continuous nonsingular terminal sliding mode control of shape memory alloy actuators using time delay estimation[J]. IEEE Transactions on Mechatronics, 2015, 20(2): 899-909.
[1] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[2] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[3] 徐卓君,王耀祥,黄兴,彭程. 多无人机地面移动目标搜寻和定位[J]. 吉林大学学报(工学版), 2023, 53(3): 832-840.
[4] 齐国元,李阔,王琨. 基于补偿函数观测器的四旋翼无人机姿态受限控制[J]. 吉林大学学报(工学版), 2023, 53(3): 853-862.
[5] 于雅静,郭健,王荣浩,秦伟,宋明武,向峥嵘. 基于状态观测器的多四旋翼无人机时变编队控制[J]. 吉林大学学报(工学版), 2023, 53(3): 871-882.
[6] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
[7] 郭洪艳,于文雅,刘俊,戴启坤. 复杂场景智能车辆车道与速度一体化滚动优化决策[J]. 吉林大学学报(工学版), 2023, 53(3): 693-703.
[8] 陈珑茏,冯天宇,吕宗阳,吴玉虎. 共轴倾转旋翼无人机有限时间滑模姿态控制[J]. 吉林大学学报(工学版), 2023, 53(3): 883-890.
[9] 齐国元,陈浩. 基于观测器的四旋翼控制-抗扰-避障一体化[J]. 吉林大学学报(工学版), 2023, 53(3): 810-822.
[10] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[11] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[12] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[13] 杨国俊,田骐玮,吕明航,杜永峰,唐光武,韩宗健,伏一多. 大跨度悬索桥隧道式锚碇力学特性研究综述[J]. 吉林大学学报(工学版), 2022, 52(6): 1245-1263.
[14] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[15] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!