吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3492-3500.doi: 10.13229/j.cnki.jdxbgxb.20220089

• 交通运输工程·土木工程 • 上一篇    

抗凝冰含砂雾封层的研发及性能分析

张争奇1(),路畅1,强亚奎1,2,郭寅川1,王东3,赵富强3   

  1. 1.长安大学 特殊地区公路工程教育部重点实验室,西安 710064
    2.酒泉市交通运输局,甘肃 酒泉 735000
    3.陕西交通控股集团有限公司,西安 710009
  • 收稿日期:2022-01-22 出版日期:2023-12-01 发布日期:2024-01-12
  • 作者简介:张争奇(1967-),男,教授,博士.研究方向:路面材料与结构设计理论与方法.E-mail:z_zhengqi@126.com
  • 基金资助:
    国家自然科学基金项目(51008031)

Preparation and properties analysis of antifreeze sand fog seal

Zheng-qi ZHANG1(),Chang LU1,Ya-kui QIANG1,2,Yin-chuan GUO1,dong WANG3,Fu-qiang ZHAO3   

  1. 1.Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang'an University,Xi'an 710064,China
    2.Transportation Bureau of Jiuquan,Jiuquan 735000,China
    3.Shaanxi Transportation Holdings Group Co. ,Ltd. ,Xi'an 710009,China
  • Received:2022-01-22 Online:2023-12-01 Published:2024-01-12

摘要:

为高效解决冬季路面积雪结冰问题,提出了在路面铺设抗凝冰含砂雾封层的方法。首先,明确了抗凝冰含砂雾封层的材料配比、抗凝冰机理和制备工艺;然后,设计了融冰雪、除冰和冻融循环试验以验证其抑冰融雪的效果,同时进行了抗渗性、抗滑性和耐磨性试验以评价其路用性能。结果表明:抗凝冰含砂雾封层通过构筑疏水表面和释放融雪剂达到抗凝冰效果,其中疏水剂和抗凝冰剂的最优掺量分别为8%和40%;该材料可使路表冰雪量显著减少,并且经冻融循环作用后仍能保持除冰性能,表现出良好的除冰雪效果和耐久性;此外,其具备良好的抗渗性和耐磨性,虽其使原路面抗滑性略有降低,但仍能满足技术要求。

关键词: 道路工程, 抗凝冰含砂雾封层, 疏水改性, 除冰雪性能, 抗滑防渗性能

Abstract:

To address the issue of ice and snow accumulation on the winter road surface efficiently, a solution involving the application of an antifreeze sand fog seal layer on the road surface was proposed. Initially, the composition, anti-icing mechanisms, and preparation procedures for the antifreeze sand fog seal layer were delineated. Subsequently, tests were conducted for ice-melting, de-icing, and freeze-thaw cycles to evaluate its ice-suppression and snow-melting efficacy. Concurrently, tests for permeability resistance, skid resistance, and abrasion resistance were performed to assess its road performance. Findings suggested that the ice prevention of antifreeze sand fog seal layer was accomplished via the establishment of a hydrophobic surface and the controlled release of de-icing agents, with the optimal proportions of hydrophobic and anti-icing agents being 8% and 40%, respectively. The material not only significantly reduced the accumulation of ice and snow on the road surface but also sustained its de-icing efficacy following freeze-thaw cycles, thus demonstrating both effective ice-suppression and durability. Additionally, the seal exhibited good permeability and abrasion resistance; albeit a slight diminution in the skid resistance of the original road surface was noted, the seal still conformed to the requisite technical specifications.

Key words: road engineering, antifreeze sand fog seal, hydrophobic modification, anti-ice-snow performance, skid resistance and impermeability performance

中图分类号: 

  • U416.217

表1

乳化沥青性能指标"

测试指标结果规范 要求

方法

测试

破乳速度慢裂-T0658
离子类型阳离子阳离子T0653
筛上剩余率(1.18 mm)/%0.01≤0.1T0652
蒸发残留物蒸发残留物含量/%58.6≥55T0651
针入度(25 ℃)/(0.1 mm)7045~150T0604
延度(15 ℃)/cm55≥40T0605
储存稳定性1 d/%0.6≤1T0655
5 d/%4.2≤5

表2

改性剂技术指标"

类型成分外观黏度/(MPa·s)固含量/%PH密度/(g·cm-3环氧值/ (mol·g-1胺值/ (mol·g-1
水性环氧体系A2∶1乳白色液体100~90050±27~81.0~1.05200~220-
B淡黄色液体5000~600063±2-0.95~1.0-180~190
SBR-乳白色液体200~30055~603~60.97--
疏水剂有机硅氧烷乳白色液体-206±0.5>1.0--

图1

抗凝冰含砂雾封层的抗凝冰机理"

图2

不同疏水剂添加量的乳化沥青疏水效果"

图3

疏水剂添加量对疏水乳化沥青接触角的影响"

图4

抗凝冰剂添加量对盐分析出和稳定性的影响"

图5

IPP处理后试件的积雪面积"

图6

无雪率随时间的变化曲线"

图7

试件上覆冰块质量随温度的变化曲线"

图8

普通沥青路面和抗凝冰含砂雾封层的敲击效果"

图9

不同喷涂量抗凝冰含砂雾封层试件的冰层残留率"

图10

抗凝冰含砂雾封层试件的冻融循环测试结果"

图11

抗凝冰含砂雾封层喷涂量对渗水系数的影响"

图12

抗凝冰含砂雾封层喷涂量对抗滑性的影响"

图13

抗凝冰含砂雾封层的耐磨性测试结果"

1 姚运仕, 陈团结, 向豪, 等. 环保型长效自融冰雪路面涂层试验[J]. 交通运输工程学报, 2013, 13(4): 8-15.
Yao Yun-shi, Chen Tuan-jie, Xiang Hao, et al. Experiment of active deicing and snow melting pavement coating with environmental friendly and long-term action[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 8-15.
2 高英力, 代凯明, 黄亮, 等. 超疏水-防覆冰技术在公路路面中的研究应用进展[J]. 材料导报, 2017, 31(1): 103-109.
Gao Ying-li, Dai Kai-ming, Huang Liang, et al. Research and application of superhydrophobic and anti-icing technology in highway pavement[J]. Materials Review, 2017, 31(1): 103-109.
3 陈渊召, 李振霞, 赵晨奥, 等. 环保缓释型主动融冰雪涂层材料研究[J]. 中国公路学报, 2020, 33(9): 155-167.
Chen Yuan-zhao, Li Zhen-xia, Zhao Chen-ao, et al. Coating material for environmental sustained release active melting of ice and snow[J]. China Journal of Highway and Transport, 2020, 33(9): 155-167.
4 刘状壮, 张有为, 季鹏宇,等.电热型融雪沥青路面传热特性研究[J].吉林大学学报: 工学版, 2023, 53(2): 523-530.
Liu Zhuang-zhuang, Zhang You-wei, Ji Peng-yu, et al. Study on heat transfer characteristics of electric heating snow melting asphalt pavement[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 523-530.
5 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.
Li Jun, Jiao Wei-cheng, Wang Yin-chun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38.
6 雷俊安, 郑南翔, 陈朝阳. 抑冰融雪涂层的制备与性能研究[J]. 公路, 2019, 64(5): 256-261.
Lei Jun-an, Zheng Nan-xiang, Chen Chao-yang. Preparation and research on performance of ice-snow melting coating[J]. Highway, 2019, 64(5): 256-261.
7 吉增晖, 俞春荣, 高志明. 含砂雾封层性能评价与工程应用研究[J]. 公路, 2017, 62(2): 205-210.
Ji Zeng-hui, Yu Chun-rong, Gao Zhi-ming. Study on performance evaluation and engineering application of sand fog seal[J]. Highway, 2017, 62(2): 205-210.
8 Hu C H, Li R, Zhao J Y, et al. Performance of waterborne epoxy emulsion sand fog seal as a preventive pavement maintenance method: from laboratory to field[J]. Advances in Materials Science and Engineering, 2020, 2020: No. 6425817.
9 Guo T T, Wang C H, Yang X, et al. Development and performance of sand fog seal with cooling and air purification effects[J]. Construction and Building Materials, 2017, 141: 608-618.
10 冯炜, 韩晓霞, 王帅, 等. 降温含砂雾封层最佳喷洒量[J]. 筑路机械与施工机械化, 2017, 34(6): 33-36.
Feng Wei, Han Xiao-xia, Wang Shuai, et al. Optimum spray amount of cooling fog seal with sand[J]. Road Machinery & Construction Mechanization, 2017, 34(6): 33-36.
11 张倩, 张旭景, 徐义恒. 水性环氧-SBR改性乳化沥青粘结料界面力学性质分析[J]. 材料科学与工程学报, 2021, 39(3): 366-372.
Zhang Qian, Zhang Xu-jing, Xu Yi-heng. Mechanical property analysis of waterborne epoxy-SBR modified emusified asphalt binder[J]. Journal of Materials Science and Engineering, 2021, 39(3): 366-372.
12 胡富贵, 田小革, 胡宏立, 等. SBR胶乳掺量对改性乳化沥青性能的影响[J]. 建筑材料学报, 2021, 24(4): 895-900.
Hu Fu-gui, Tian Xiao-ge, Hu Hong-li, et al. Effect of SBR latex content on performance of modified emulsified asphalt[J]. Journal of Building Materials, 2021, 24(4): 895-900.
13 孙吉书, 侯坤, 王鹏飞. 表面有机化硅藻土-胶粉复合改性沥青性能研究[J]. 热固性树脂, 2021, 36(5): 15-20.
Sun Ji-shu, Hou Kun, Wang Peng-fei. Study on the performance of surface organic diatomite-crumb rubber composite modified asphalt[J]. Thermosetting Resin, 2021, 36(5): 15-20.
14 Zheng L, Wu X, Lou Z, et al. Superhydrophobicity from microstructured surface[J]. Chinese Science Bulletin, 2004, 49(17): 1779-1787.
15 Milne A, Elliott J, Zabeti P, et al. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces[J]. Physical Chemistry Chemical Physics Pccp, 2011, 13(36): 16208-16219.
16 唐斯. 水泥乳化沥青砂浆的吸水和失水特性及干湿循环对性能的影响[D]. 长沙: 中南大学土木工程学院, 2014.
Tang Si. Water absorption and evaporating characteristics of cement asphalt mortar and effect of wetting-drying cycles on its properties[D]. Changsha: College of Civil Engineering, Central South University, 2014.
17 邬惠娟, 徐刚. 含砂雾封层技术设计及应用[J].公路交通科技: 应用技术版, 2015, 11(6): 130-131.
Wu Hui-juan, Xu Gang. Design and application of sand fog seal technology[J]. Highway Traffic Technology (Application Technology Edition), 2015, 11(6): 130-131.
18 EN 12272-3-2003. Surface dressing-test method-part 3: determination of binderaggregate adhesivity by the vialit plate shock test method [S].
19 . 环氧树脂地面涂层材料 [S].
[1] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[2] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[3] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[4] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[5] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[6] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[7] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[8] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[9] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[10] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[11] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[12] 李博,李欣,芮红,梁媛. 基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测[J]. 吉林大学学报(工学版), 2023, 53(6): 1853-1860.
[13] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[14] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
[15] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!