吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3481-3491.doi: 10.13229/j.cnki.jdxbgxb.20220182

• 交通运输工程·土木工程 • 上一篇    

基于改进正负靶心决策理论的钢筋混凝土桥梁耐久性评估模型

柴乃杰(),周文梁()   

  1. 中南大学 交通运输工程学院,长沙 410075
  • 收稿日期:2022-02-28 出版日期:2023-12-01 发布日期:2024-01-12
  • 通讯作者: 周文梁 E-mail:chainaijie@csu.edu.cn;zwl_0631@csu.edu.cn
  • 作者简介:柴乃杰(1994-),男,博士研究生.研究方向: 交通运输规划与管理.E-mail:chainaijie@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U1934216);中国国家铁路集团有限公司系统性重大课题项目(P2021X008)

Durability assessment model of reinforced concrete bridges based on improved positive and negative clouts decision theory

Nai-jie CHAI(),Wen-liang ZHOU()   

  1. School of Traffic & Transportation Engineering,Central South University,Changsha 410075,China
  • Received:2022-02-28 Online:2023-12-01 Published:2024-01-12
  • Contact: Wen-liang ZHOU E-mail:chainaijie@csu.edu.cn;zwl_0631@csu.edu.cn

摘要:

钢筋混凝土桥梁耐久性评估属于在不确定环境下的多属性决策问题,针对其指标数据信息不完整的特点,本文提出了基于改进正负靶心的灰靶评估模型。引入正靶心点距及投影值、负靶心点距及投影值、靶心系数、正负靶心距和综合靶心距等概念,实现桥梁耐久性的宏观和微观一体化分析,并将模型应用于甘肃省境内9座钢筋混凝土公路桥梁耐久性评估。结果表明:该9座桥梁的耐久性水平优劣从高到低排序为:桥梁6#、7#、4#、8#、1#、3#、2#、5#、9#,其中桥梁6#、7#的耐久性等级为Ⅱ级,桥梁1#、3#、4#和8#的耐久性等级为Ⅲ级,而桥梁2#、5#和9#的耐久性等级为Ⅳ级。通过指标敏感性分析,得出桥梁耐久性的绝对平均变化率随权重变化率绝对值增加呈线性增长趋势,而且指标权重与其敏感性有一定关系,即在指标权重变化率相同的情况下,指标权重越大,综合评价结果的平均变化率也越大。

关键词: 桥梁耐久性, 正负靶心系数, 改进灰靶决策, 综合靶心距值

Abstract:

Durability evaluation of reinforced concrete bridges is a multi-attribute decision-making problem in uncertain environment. According to the characters of uncertain evaluation indicator and its date information, the gray-target assessment model based on improved positive and negative bulls-eye method was proposed, and the concepts of positive and negative bulls-eye distance and projection value, bulls-eye coefficient, positive and negative bulls-eye distance and comprehensive bulls-eye distance were introduced to realize the integrated macro and micro analysis of bridge durability. The model was applied in the durability assessment of nine reinforced concrete highway bridges in Gansu province, the results show that the ranking orders of durability between the nine bridges: Bridge 6#>7#>4#>8#>1#>3#>2#>5#>9#, and the durability of Bridges 6#, 7# belong to Level Ⅱ, the durability of Bridges 1#, 3#, 4# and 8# to Level Ⅲ, and the durability of Bridges2#, 5#, 9# to Level Ⅳ. Through index sensitivity analysis, it is concluded that the absolute average change rate of bridge durability increases linearly with the increase of absolute value of index weight change rate, and there is a certain relationship between index weight and sensitivity, that is, when the index weight change rate is the same, the higher the index weight, the greater the average change rate of comprehensive evaluation results.

Key words: durability of bridge, positive and negative bulls-eye coefficient, improved gray-target decision, comprehensive bulls-eye distance

中图分类号: 

  • TU375

图1

改进正负靶心的灰靶模型评估流程"

表1

钢筋混凝土桥梁耐久性评价指标及其等级划分"

评价指标等级分类
Ⅰ级(优)Ⅱ级(良)Ⅲ级(中)Ⅳ级(合格)Ⅴ级(不合格)
钢筋锈蚀电位I1/(kg·m-3>-200(-300,-200](-400,-300](-500,-400]≤-500
氯离子含量I2≤0.15(0.15,0.40](0.40,0.70](0.70,1.00]>1.00
混凝土电阻率I3/(kΩ·cm)>20(15,20](10,15](5,10]≤5
构件裂缝情况I4/mm=0(0,1](1,3](3,5]>5
关键位置缝宽I5/mm≤0.05(0.05,0.20](0.20,0.35](0.35,0.50]>0.50
碳化系数I6≤0.5(0.5,1.0](1.0,1.5](1.5,2.0]>2.0
混凝土推定强度匀质系数I7>0.95(0.90,0.95](0.80,0.90](0.70,0.80]≤0.70
钢筋保护层厚度比I8>0.95(0.85,0.95](0.70,0.85](0.55,0.70]≤0.55
钢筋分布情况I9>0.95(0.90,0.95](0.85,0.90](0.80,0.85]≤0.80
桥梁挠度变形I10/%≤0.25(0.25,0.50](0.50,0.75](0.75,1.00]>1.00
交通量比I11≤1.0(1.0,1.3](1.3,1.7](1.7,2.0]>2.0
轴载超标率I12/%=0(0,5](5,15](15,30]>30

表2

钢筋混凝土桥梁耐久性状况评估等级"

级别状态对结构承载力和耐久性的影响养护维修措施综合靶心距值di
良好无影响,可忽略无需维修,仅需正常养护0.80<di ≤1.00
较好若不及时维修会在后期影响结构的承载力和耐久性简单局部修补便可修复0.60<di ≤0.80
较差结构的承载能力和耐久性降低,但不要求限制交通局部中修,加强观测0.40<di ≤0.60
处于危险状态,需要限制交通立即采取大面积加固0.20<di ≤0.40
危险可能随时发生坍塌,需禁止通车拆除重建或启动应急预案0.00<di ≤0.20

表3

桥梁耐久性评价指标试验数据"

桥梁编号桥梁耐久性评价各指标试验数据统计值
I1I2I3I4I5I6I7I8I9I10I11I12
1#-4320.205.00.60.130.750.980.860.800.360.6530.0
2#-1860.8421.52.60.281.300.840.750.850.240.9418.2
3#-2240.457.85.00.250.820.870.570.940.451.364.9
4#-3520.405.80.90.291.950.800.610.8750.581.173.5
5#-2370.1816.44.20.181.650.970.850.920.381.203.9
6#-2560.749.34.20.541.950.650.500.9050.851.0424.5
7#-2600.953.73.50.341.750.660.540.830.751.1915.8
8#-3260.57154.70.261.300.890.650.930.871.352.3
9#-2050.4516.80.10.210.150.830.850.900.161.704.8

图2

桥梁1# ~9#的指标正靶心系数(γi+)图"

图3

桥梁1#~9#的指标负靶心系数(γi- )图"

图4

桥梁1# ~9#的正靶心点距、负靶心点距及综合靶心距对比"

图5

指标敏感性分析"

1 陈颖杰. 基于模糊C均值聚类的钢筋混凝土桥梁耐久性评价方法研究[D]. 长春: 吉林大学交通学院, 2014.
Chen Ying-jie. Research on durability evaluation of reinforced concrete bridges based on FCM[D]. Changchun: College of Transportation, Jilin University, 2014.
2 李文杰, 侯天宇, 赵君黎, 等. 基于可靠度理论的混凝土桥梁安全性评估方法研究[J]. 公路交通科技, 2017, 34(4): 87-92.
Li Wen-jie, Hou Tian-yu, Zhao Jun-li, et al. Study on safety evaluation method for concrete bridges based on reliability theory[J]. Journal of Highway and Transportation Research and Development, 2017, 34(4): 87-92.
3 Kawamura K, Miyamoto A, Frangopol D M, et al. Performance evaluation of concrete slabs of existing bridges using neural networks[J]. Engineering Structures, 2003, 25(12): 1455-1477.
4 Greta S, Robert K, Dee M. Upgrading bridge durability[J]. Materials Performance, 2011(11): 50-53.
5 Stewart M G, Rosowsky D V, Val D V. Reliability-based bridge assessment using risk-ranking decision analysis[J]. Structural Safety, 2002, 23 (4): 397-405.
6 邓忠, 赵尚传, 刘斌云. 基于多阶段定期检查数据的混凝土桥梁碳化耐久性评估方法[J]. 公路交通科技, 2016, 33(9): 64-68.
Deng Zhong, Zhao Shang-chuan, Liu Bin-yun. An evaluation method for carbonation durability of concrete bridge based on multiple periodic inspection data[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 64-68.
7 Cheng Y C, Guo H B, Wang X Q, et al. Durability assessment of reinforced concrete bridge based on fuzzy neural networks[J]. Advanced Materials Research, 2014, 838: 1069-1072.
8 Deng Ju-long. Grey entropy and grey target decision making[J]. Journal of Grey System, 2010, 22(1): 1-4.
9 冯愿. 基于灰靶决策模型的高校息化设备供应商选择研究[J]. 数学的实践与认识, 2021, 51(19): 96-105.
Feng Yuan. Research on information equipment supplier selection in colleges and universities based on the weighted multi-objective grey target decision model[J]. Mathematics in Practice and Cognition, 2021, 51(19): 96-105.
10 陈亮, 刘琦. 加权灰靶决策方法预测煤与瓦斯突出危险研究[J]. 安全与环境工程, 2021, 28(6): 61-66.
Chen Liang, Liu Qi. Risk prediction of coal and gas outburst by weighted grey target decision method[J]. Safety and Environmental Engineering, 2021, 28(6): 61-66.
11 黎振宇, 陈晓国, 宋永超, 等. 二元联系数-投影灰靶决策理论在电网应急能力评估中的应用[J]. 浙江大学学报: 工学版, 2021, 55(5): 927-934, 975.
Li Zhen-yu, Chen Xiao-guo, Song Yong-chao, et al. Application of binary connection number-projection grey target decision theory in power system emergency capability evaluation[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 927-934, 975.
12 高彩云, 崔希民. 基于多因素加权灰靶决策模型的滑坡灾害危险性评价[J]. 中南大学学报:自然科学版, 2016, 47(2): 524-530.
Gao Cai-yun, Cui Xi-min. Landslide risk assessment based on multi-index weighted grey target decision model[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 524-530.
13 蔡佳佳, 方志耕, 张秦, 等. 基于改进调节变量主成分权重的广义灰靶决策模型研究[J]. 系统工程理论与实践, 2020, 40(11): 2991-2999.
Cai Jia-jia, Fang Zhi-geng, Zhang Qin, et al. Research on generalized grey target decision model based on improved principal component weights of moderating variables[J]. Systems Engineering-Theory & Practice, 2020, 40(11): 2991-2999.
14 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002.
15 党耀国, 刘思峰, 王正新, 等. 灰色预测与决策模型研究[M]. 北京: 科学出版社, 2009.
16 罗党. 基于正负靶心的多目标灰靶决策模型[J]. 控制与决策, 2013, 28(2): 241-246.
Luo Dang. Multi-objective gray target decision making model based on positive and negative bullhells[J]. Control & Decision, 2013, 28(2): 241-246.
17 郭三党, 刘思峰, 方志耕. 基于后悔理论的多目标灰靶决策方法[J]. 控制与决策, 2015, 30(9): 1635-1640.
Guo San-dang, Liu Si-feng, Fang Zhi-geng. Multi-objective gray target decision making based on regret theory[J]. Control & Decision, 2015, 30(9): 1635-1640.
18 卞小草, 胡志根. 基于决策者风险偏好的混凝土坝浇筑方案灰靶评价模型[J]. 四川大学学报:工程科学版, 2013, 45(4): 21-26.
Bian Xiao-cao, Hu Zhi-gen. Gray target evaluating model of concrete dam pouring schemes based on risk preference of decision makers[J]. Journal of Sichuan University (Engineering Science), 2013, 45(4): 21-26.
19 张俊凤, 花盛. 基于改进灰靶模型的土地整治可持续性评价研究——以江苏省为例[J]. 长江流域资源与环境, 2014, 23(2): 153-160.
Zhang Jun-feng, Hua Sheng. Study on land renovation sustainability assessment based on improved gray target model—a case study of jiangsu province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(2): 153-160.
20 张彬, 滕飞. 现役桥梁承载能力的灰靶理论评价[J]. 辽宁工程技术大学学报: 自然科学版, 2015, 34(4): 480-484.
Zhang Bin, Teng Fei. Grey target theory evaluation of bearing capacity for bridges in use[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(4): 480-484.
21 王慧, 章恒全. 基于熵权-离差最大化法的小水电投资风险评价[J]. 水电能源科学, 2014, 32(8): 138-141.
Wang Hui, Zhang Heng-quan. Evaluation of investment risk of small hydropower based on entropy-deviation maximization[J]. Hydropower Energy Science, 2014, 32(8): 138-141.
22 武芳文, 丰丙龙, 薛成凤. 铁路钢筋混凝土拱桥使用安全现状评估[J]. 铁道工程学报, 2016, 33(5): 42-47.
Wu Fang-wen, Feng Bing-long, Xue Cheng-feng. Durability assessment on railway reinforced concrete arch bridge[J]. Journal of Railway Engineering Society, 2016, 33(5): 42-47.
23 赵小娟, 叶云, 周晋皓, 等. 珠三角丘陵区耕地质量综合评价及指标权重敏感性分析[J]. 农业工程学报, 2017, 33(8): 226-235.
Zhao Xiao-juan, Ye Yun, Zhou Jin-hao, et al. Comprehensive evaluation of cultivated land quality and sensitivity analysis of index weight in hilly region of pearl river delta[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 226-235.
[1] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
[2] 邸振勇,杨新辉,林霄. 建筑板柱结构冲切破坏试验及节点承载力分析[J]. 吉林大学学报(工学版), 2023, 53(10): 2879-2885.
[3] 张艳青,吕宇宣,韩石,尤龙飞,曾俊,侯飞阳. 管幕预筑结构构件受弯性能试验[J]. 吉林大学学报(工学版), 2023, 53(5): 1390-1399.
[4] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[5] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[6] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[7] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[8] 陈伟宏,陈艳,洪秋榕,崔双双,颜学渊. BRBs加固震损装配式混凝土框架结构抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1817-1825.
[9] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[10] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[11] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[12] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[13] 王秀振,钱永久,邵长江,宋帅. 考虑楼层相关性的框架结构地震易损性分析[J]. 吉林大学学报(工学版), 2020, 50(1): 202-209.
[14] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[15] 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!